精英家教网 > 高中数学 > 题目详情
1.已知函数f(x)是定义在R上连续的偶函数,f(x)在[0,+∞)递增且f(2)=0,则函数y=|f(1-x)|的单调递增区间为[-1,1]和[3,+∞)..

分析 利用特殊值法,给定满足题意的函数解析式.然后结合题意区间函数的单调区间即可.

解答 解:不妨令f(x)=x2-4,则函数f(x)满足题中的条件,
此时 y=|f(1-x)|=|(1-x)2-4|=|x2-2x-3|,
绘制函数图象如图所示,观察可得函数的单调递增区间为:[-1,1]和[3,+∞).

故答案为:[-1,1]和[3,+∞).

点评 本题考查函数的单调性,函数的奇偶性等,重点考查学生对基础概念的理解和计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.若a,b∈R且ab=1,则下列不等式恒成立的是(  )
A.a+b≥2B.a2+b2>2C.$\frac{b}{a}$+$\frac{a}{b}$≥2D.$\frac{1}{a}$+$\frac{1}{b}$≥2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在正方体ABCDA1B1C1D1中随机取一点,则点落在四棱锥OABCD内(O为正方体的对角线的交点)的概率是(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{1}{6}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若l1:x+(1+m)y+m-1=0,l2:mx+2y+6=0是两条平行直线,则m的值是(  )
A.m=1或m=-2B.m=1C.m=-2D.m的值不存在

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=x2+2x+alnx
(Ⅰ)若函数f(x)在x=1处的切线与直线y-3x=0平行,求a的值;
(Ⅱ)当t≥1时,不等式f(2t-1)≥2f(t)-3恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.解下列方程:
(1)$(\frac{2}{3})^{x}(\frac{9}{8})^{x}=\frac{27}{64}$
(2)2logx25-3log25x=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.随着生活水平的提高,越来越多的人参与了潜水这项活动.某潜水中心调查了100名男姓与100名女姓下潜至距离水面5米时是否会耳鸣,下图为其等高条形图:

①绘出2×2列联表;
②根据列联表的独立性检验,能否在犯错误的概率不超过0.05的前提下认为耳鸣与性别有关系?
P(K2≥k00.0250.0100.0050.001
k05.0246.6357.87910.828
附:K2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$n=a+b+c+d.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.圆的参数方程为$\left\{\begin{array}{l}{x=4cosθ}\\{y=4sinθ}\end{array}\right.$(θ为参数,0≤θ<2π),若Q(-2,2$\sqrt{3}$)是圆上一点,则对应的参数θ的值是$\frac{2π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在△ABC中,角A,B,C所对的边分别为a,b,c,已知cosC=$\frac{\sqrt{6}}{4}$.
(1)求sinC的值;
(2)当a=2,2sinA=sinC时,求b,c的长.

查看答案和解析>>

同步练习册答案