精英家教网 > 高中数学 > 题目详情
11.在△ABC中,角A,B,C所对的边分别为a,b,c,已知cosC=$\frac{\sqrt{6}}{4}$.
(1)求sinC的值;
(2)当a=2,2sinA=sinC时,求b,c的长.

分析 (1)利用同角三角函数基本关系式,求解即可.
(2)利用正弦定理求出c,然后利用余弦定理求解b即可.

解答 解:(1)因为cosC=$\frac{\sqrt{6}}{4}$,
得sin2C=1-cos2C=$\frac{10}{16}$,又C∈(0,π),得sinC=$\frac{\sqrt{10}}{4}$.…(4分)
(2)当a=2,2sinA=sinC时,
由正弦定理$\frac{a}{sinA}=\frac{c}{sinC}$,得c=4.…(8分)
cosC=$\frac{\sqrt{6}}{4}$,由余弦定理c2=a2+b2-2bccosC,得
b2-$\sqrt{6}$b-12=0,解得b=2$\sqrt{6}$.b=-$\sqrt{6}$(舍去)…(12分)

点评 本题考查三角形的解法,正弦定理以及余弦定理的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.已知函数f(x)是定义在R上连续的偶函数,f(x)在[0,+∞)递增且f(2)=0,则函数y=|f(1-x)|的单调递增区间为[-1,1]和[3,+∞)..

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知(x+2)2n=a0+a1(x+1)+a2(x+1)2+…+a2n-1(x+1)2n-1+a2n(x+1)2n,n≥2,n∈N+,则a2+a4+…+a2n-2+a2n=2${\;}^{2n-1}-\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若某一射手射击所得环数X的分布列为
X45678910
P0.020.040.060.090.280.290.22
则此射手“射击一次命中环数X≥7”的概率是(  )
A.0.88B.0.12C.0.79D.0.09

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.函数y=5$\sqrt{2x-1}$+$\sqrt{10-2x}$的最大值为3$\sqrt{26}$,此时x=$\frac{251}{52}$(利用柯西不等式)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知定义在R上的函数f(x)=|x+4|-|x+1|的最大值为a,且g(x)=x2+(a-1)x.
(1)求实数a的值;
(2)解不等式f(x)+2|x+1|>g(x).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.某工厂对某产品的产量与成本的资料分析后有如下数据:
产量x(千件)2356
成本y(万元)78912
由表中数据得到的线性回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$中$\stackrel{∧}{b}$=1.1,预测当产量为9千件时,成本约为(  )万元.
A.14.5B.13.5C.12.5D.11.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设变量x,y满足约束条件$\left\{\begin{array}{l}{x>-1}\\{y≤1}\\{x-y+1≤0}\end{array}\right.$,则(x-2)2+y2的最小值为5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.“c≠0”是“方程ax2+y2=c表示椭圆或双曲线”的必要不充分条件.

查看答案和解析>>

同步练习册答案