精英家教网 > 高中数学 > 题目详情

【题目】解答
(1)若ax>lnx恒成立,求实数a的取值范围;
(2)证明:a>0,x0∈R,使得当x>x0时,ax>lnx恒成立.

【答案】
(1)解:若ax>lnx恒成立,

则a> ,在x>0时恒成立,

设h(x)=

则h′(x)= =

由h′(x)>0得1﹣lnx>0,即lnx<1,得0<x<e,

由h′(x)<0得1﹣lnx<0,即lnx>1,得x>e,

即当x=e时,函数h(x)取得极大值同时也是最大值h(e)= =

即a>


(2)证明:设f(x)=lnx,g(x)=ax,(x>0),

则f′(x)= ,当g(x)与f(x)相切时,设切点为(m,lnm),

则切线斜率k=

则过原点且与f(x)相切的切线方程为y﹣lnm= (x﹣m)= x﹣1,

即y= x﹣1+lnm,

∵g(x)=ax,

,得m=e,a=

即当a> 时,ax>lnx恒成立.

当a= 时,当x0 时,

要使ax>lnx恒成立.得当x>x0时,ax>lnx恒成立.

当0<a< 时,f(x)与g(x)有两个不同的交点,不妨设较大的根为x1,当x0≥x1时,

当x>x0时,ax>lnx恒成立.

a>0,x0∈R,使得当x>x0时,ax>lnx恒成立.


【解析】(1)首先求出函数的导数,然后根据导数与单调区间的关系确定函数的单调区间,(2)先求出当直线和y=lnx相切时a的取值,然后进行讨论求解即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆+=1的焦点分别是 是椭圆上一点,若连结三点恰好能构成直角三角形,则点轴的距离是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是定义在上的偶函数,对于,都有,当时,,若在[-1,5]上有五个根,则此五个根的和是( )

A. 7 B. 8 C. 10 D. 12

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知角α终边逆时针旋转 与单位圆交于点 ,且
(1)求 的值,
(2)求 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)令,讨论函数的单调性;

(2)若对任意,都有恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】根据条件,求下列曲线的方程.

1已知两定点,曲线上的点距离之差的绝对值为,求曲线的方程

(2)在 轴上的一个焦点与短轴两端点的连线互相垂直,且焦距为的椭圆的标准方程

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)当时,求的单调增区间.

(2)若对任意的实数及任意的,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)已知点为抛物线的焦点,点在抛物线上,且

)求抛物线的方程;

)已知点,延长交抛物线于点,证明:以点为圆心且与直线相切的圆,必与直线相切.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)试讨论函数的单调性;

(2)证明:.

查看答案和解析>>

同步练习册答案