精英家教网 > 高中数学 > 题目详情
11.设F1,F2是椭圆$\frac{{x}^{2}}{4}$+y2=1的左右焦点,动点P在椭圆上,则$\frac{\overrightarrow{P{F}_{1}}•\overrightarrow{P{F}_{2}}}{|P{F}_{1}||P{F}_{2}|}$的取值范围为(  )
A.[0,1]B.[-$\frac{1}{2}$,$\frac{1}{2}$]C.[-$\frac{\sqrt{3}}{2}$,1]D.[-$\frac{1}{2}$,1]

分析 由椭圆方程可得椭圆的长轴长及焦距,再由余弦定理求得$\frac{\overrightarrow{P{F}_{1}}•\overrightarrow{P{F}_{2}}}{|P{F}_{1}||P{F}_{2}|}$的取值范围.

解答 解:由椭圆$\frac{{x}^{2}}{4}$+y2=1,得a2=4,b2=1,
∴c2=a2-b2=3,
则a=2,2a=4,c=$\sqrt{3}$,2c=2$\sqrt{3}$.
设|PF1|=m,|PF2|=n,
则m+n=2a=4,
再设∠F1PF2=θ,
则$\frac{\overrightarrow{P{F}_{1}}•\overrightarrow{P{F}_{2}}}{|P{F}_{1}||P{F}_{2}|}$=cosθ=$\frac{{m}^{2}+{n}^{2}-(2{c)}^{2}}{2mn}$=$\frac{(m+n)^{2}-2mn-12}{2mn}$
=$\frac{16-12-2mn}{2mn}=\frac{2}{mn}-1$.
∵mn$≤(\frac{m+n}{2})^{2}=4$,
∴$\frac{2}{mn}≥\frac{1}{2}$,则$\frac{2}{mn}-1≥-\frac{1}{2}$,
当P为椭圆长轴两端点时,cosθ有最大值为1.
∴$\frac{\overrightarrow{P{F}_{1}}•\overrightarrow{P{F}_{2}}}{|P{F}_{1}||P{F}_{2}|}$的取值范围为[$-\frac{1}{2},1$].
故选:D.

点评 本题主要考查椭圆定义的应用及焦点三角形问题,这类题是常考类型,考查灵活,特别是对曲线的定义和性质考查的很到位,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知椭圆C:x2+3y2=4.
(I)求椭圆的离心率;
(Ⅱ)试判断命题“若过点M(1,0)的动直线l交椭圆于A,B两点,则在直角坐标平面上存在定点N,使得以线段AB为直径的圆恒过点N”的真假,若为真命题,求出定点N的坐标;若为假命题,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.△ABC的三个内角A,B,C所对的边分别为a,b,c,且asinAsinB+bcos2A=$\frac{5}{3}$a.
(I)求$\frac{b}{a}$;
(Ⅱ)若c2=a2+$\frac{8}{5}\;{b^2}$,求角C.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.定义一种集合运算A?B={x|x∈(A∪B),且x∉(A∩B)},设M={x|-2<x<3},N={x|1<x<4},则M?N所表示的集合是{x|-2<x≤1或3≤x<4}..

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图所示,在三棱锥P-ABC中,点P在平面ABC上的射影D与AC的中点重合,已知BC=2AC=8,AB=4$\sqrt{5}$.
(1)证明:平面PBC⊥平面PAC;
(2)若直线AB与平面PBC所成角的正弦值为$\frac{\sqrt{15}}{10}$,求三棱锥P-ABC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下列直线中与直线x+2y+1=0平行的一条是(  )
A.2x-y+1=0B.2x-4y+2=0C.2x+4y+1=0D.2x-4y+1=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)满足:(1)焦点为F1(-5,0),F2(5,0);(2)离心率为$\frac{5}{3}$,且求得双曲线C的方程为f(x,y)=0.若去掉条件(2),另加一个条件求得双曲线C的方程仍为f(x,y)=0,则下列四个条件中,符合添加的条件共有(  )
①双曲线C上任意一点P都满足||PF1|-|PF2||=6;
②双曲线C的虚轴长为4;
③双曲线C的一个顶点与抛物线y2=6x的焦点重合;
④双曲线C的渐进线方程为4x±3y=0.
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若函数f(x)=x•ex-m在R上存在两个不同的零点,则m的取值范围是(  )
A.$-\frac{1}{e}<m<0$B.$m>-\frac{1}{e}$C.m>eD.-e<m<0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.计算下列各式的值:
(1)${({\frac{9}{4}})^{\frac{1}{2}}}-{({-9.6})^0}-{({\frac{27}{8}})^{-\frac{2}{3}}}+{({\frac{3}{2}})^{-2}}$
(2)${log_3}\sqrt{3}+lg25+lg4+{7^{{{log}_7}2}}$.

查看答案和解析>>

同步练习册答案