精英家教网 > 高中数学 > 题目详情
2.△ABC的三个内角A,B,C所对的边分别为a,b,c,且asinAsinB+bcos2A=$\frac{5}{3}$a.
(I)求$\frac{b}{a}$;
(Ⅱ)若c2=a2+$\frac{8}{5}\;{b^2}$,求角C.

分析 (I)由正弦定理化简已知等式,整理即可得解.
(II)设b=5t(t>0),由(I)可求a=3t,由已知可求c=7t,由余弦定理得cosC的值,利用特殊角的三角函数值即可求解.

解答 (本题满分为12分)
解:(I)由正弦定理得,${sin^2}AsinB+sinB{cos^2}A=\frac{5}{3}sinA$,…(3分)
即$sinB({sin^2}A+{cos^2}A)=\frac{5}{3}sinA$,
故$sinB=\frac{5}{3}sinA,所以\frac{b}{a}=\frac{5}{3}$. …(6分)
(II)设b=5t(t>0),则a=3t,于是${c^2}={a^2}+\frac{8}{5}\;{b^2}=9{t^2}+\frac{8}{5}•25{t^2}=49{t^2}$.
即c=7t.…(9分)
由余弦定理得$cosC=\frac{{{a^2}+{b^2}-{c^2}}}{2ab}=\frac{{9{t^2}+25{t^2}-49{t^2}}}{2•3t•5t}=-\frac{1}{2}$.
所以$C=\frac{2π}{3}$.…(12分)

点评 本题主要考查了正弦定理,余弦定理,同角三角函数基本关系式在解三角形中的应用,考查了计算能力和转化思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知点A(2,3)、B(5,4)、C(7,10),若点P满足$\overrightarrow{AP}$=$\overrightarrow{AB}$+λ$\overrightarrow{AC}$(λ∈R),当λ为何值时:
(1)点P在直线y=2x上?
(2)点P在第三象限内?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知x0是函数$f(x)={2^x}+\frac{1}{1-x}$的一个零点,若x1∈(1,x0),x2∈(x0,+∞),则有f(x1)小于(填“大于”或“小于”)零,f(x2)大于(填“大于”或“小于”)零.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数$f(x)=\frac{{\sqrt{3}}}{2}sin2x+\frac{1}{2}cos2x$.
(Ⅰ)求函数f(x)的最小正周期T和单调增区间;
(Ⅱ)若$x∈[0,\frac{π}{2}]$,求f(x)的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知向量$\overrightarrow{a}$=(-1,3),$\overrightarrow{b}$=(x,2),且$\overrightarrow{a}$$∥\overrightarrow{b}$,则x=(  )
A.$\frac{3}{2}$B.$-\frac{3}{2}$C.$-\frac{2}{3}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.
从图中任选5个序号,写出其对应定理或结论.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知直线l过点P(-2,-2),且与以A(-1,1),B(3,0)为端点的线段AB相交,则直线l的斜率的取值范围是[$\frac{5}{2}$,3].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设F1,F2是椭圆$\frac{{x}^{2}}{4}$+y2=1的左右焦点,动点P在椭圆上,则$\frac{\overrightarrow{P{F}_{1}}•\overrightarrow{P{F}_{2}}}{|P{F}_{1}||P{F}_{2}|}$的取值范围为(  )
A.[0,1]B.[-$\frac{1}{2}$,$\frac{1}{2}$]C.[-$\frac{\sqrt{3}}{2}$,1]D.[-$\frac{1}{2}$,1]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.$\frac{{2cos{7^0}}}{{cos{{23}^0}}}-tan{23^0}$=$\sqrt{3}$.

查看答案和解析>>

同步练习册答案