精英家教网 > 高中数学 > 题目详情
12.$\frac{{2cos{7^0}}}{{cos{{23}^0}}}-tan{23^0}$=$\sqrt{3}$.

分析 由23°=30°-7°,利用同角三角函数基本关系式,两角和与差的正弦函数,余弦函数公式,特殊角的三角函数值即可化简求值.

解答 解:$\frac{{2cos{7^0}}}{{cos{{23}^0}}}-tan{23^0}$=$\frac{2cos7°-sin23°}{cos23°}$=$\frac{2cos7°-sin(30°-7°)}{cos23°}$
=$\frac{2cos7°-(\frac{1}{2}cos7°-\frac{\sqrt{3}}{2}sin7°)}{cos23°}$
=$\frac{\frac{3}{2}cos7°+\frac{\sqrt{3}}{2}sin7°}{cos23°}$
=$\frac{\sqrt{3}cos(30°-7°)}{cos23°}$
=$\sqrt{3}$.
故答案为:$\sqrt{3}$.

点评 本题主要考查了同角三角函数基本关系式,两角和与差的正弦函数,余弦函数公式,特殊角的三角函数值在三角函数化简求值中的应用,考查了计算能力和转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.△ABC的三个内角A,B,C所对的边分别为a,b,c,且asinAsinB+bcos2A=$\frac{5}{3}$a.
(I)求$\frac{b}{a}$;
(Ⅱ)若c2=a2+$\frac{8}{5}\;{b^2}$,求角C.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)满足:(1)焦点为F1(-5,0),F2(5,0);(2)离心率为$\frac{5}{3}$,且求得双曲线C的方程为f(x,y)=0.若去掉条件(2),另加一个条件求得双曲线C的方程仍为f(x,y)=0,则下列四个条件中,符合添加的条件共有(  )
①双曲线C上任意一点P都满足||PF1|-|PF2||=6;
②双曲线C的虚轴长为4;
③双曲线C的一个顶点与抛物线y2=6x的焦点重合;
④双曲线C的渐进线方程为4x±3y=0.
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若函数f(x)=x•ex-m在R上存在两个不同的零点,则m的取值范围是(  )
A.$-\frac{1}{e}<m<0$B.$m>-\frac{1}{e}$C.m>eD.-e<m<0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知函数f(x)由下表给出,则f(2)=3.
x123
f(x)231

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数$f(x)=\left\{\begin{array}{l}m\sqrt{1-{x^2}},x∈({-1,1}]\\ 1-|{x-2}|,x∈({1,3}]\end{array}\right.$,其中m>0,且函数f(x)=f(x+4),若方程3f(x)-x=0恰有5个根,则实数m的取值范围是(  )
A.$(\frac{{\sqrt{15}}}{3},\sqrt{7})$B.$(\frac{{\sqrt{15}}}{3},\frac{8}{3})$C.$(\frac{4}{3},\sqrt{7})$D.$(\frac{4}{3},\frac{8}{3})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列命题中假命题有(  )
①若向量$\overrightarrow{a}$,$\overrightarrow{b}$所在的直线为异面直线,则向量$\overrightarrow{a}$,$\overrightarrow{b}$一定不共面;
②?θ∈R,使sinθcosθ=$\frac{3}{5}$成立;
③?a∈R,都有直线ax+2y+a-2=0恒过定点;
④命题“若x2+y2=0,则x=y=0”的逆否命题为“若x,y中至少有一个不为0,则x2+y2≠0”.
A.3个B.2个C.1个D.0个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.计算下列各式的值:
(1)${({\frac{9}{4}})^{\frac{1}{2}}}-{({-9.6})^0}-{({\frac{27}{8}})^{-\frac{2}{3}}}+{({\frac{3}{2}})^{-2}}$
(2)${log_3}\sqrt{3}+lg25+lg4+{7^{{{log}_7}2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知f(x,y)=(x-y)2+($\frac{x}{4}$+$\frac{1}{y}$)2(y≠0),则f(x,y)的最小值是$\frac{16}{17}$.

查看答案和解析>>

同步练习册答案