精英家教网 > 高中数学 > 题目详情
12.已知向量$\overrightarrow a$=(1,2),$\overrightarrow b$=(2,-1),若向量$\overrightarrow c$满足$(\overrightarrow c+\overrightarrow a)∥\overrightarrow b$,$(\overrightarrow a-\overrightarrow b)⊥\overrightarrow c$,则$\overrightarrow c$=(  )
A.(1,3)B.(-1,3)C.(-1,-3)D.(-3,-1)

分析 利用向量共线定理、向量垂直与数量积的关系即可得出.

解答 解:$\overrightarrow{c}+\overrightarrow{a}$=(1+x,2+y),$\overrightarrow{a}-\overrightarrow{b}$=(-1,3),设$\overrightarrow{c}$=(x,y).
∵$(\overrightarrow c+\overrightarrow a)∥\overrightarrow b$,$(\overrightarrow a-\overrightarrow b)⊥\overrightarrow c$,
∴2(2+y)+1+x=0,-x+3y=0,
联立解得x=-3,y=-1.
则$\overrightarrow c$=(-3,-1),
故选:D.

点评 本题考查了向量共线定理、向量垂直与数量积的关系,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.已知点A(1,1,-2),点B(1,1,1),则线段AB的长度是3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知曲线C:$\frac{x^2}{9}$+$\frac{y^2}{4}$=1,直线l:ρ(2cosθ-3sinθ)=12.
(1)将直线l的极坐标方程化为直角坐标方程;
(2)设点P在曲线C上,求P点到直线l的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.数列{an}的前n项和为Sn且满足a1=1,2an+1=2an+p(p为常数,n=1,2,3…).
(1)求Sn
(2)若数列{an}是等比数列,求实数p的值;
(3)是否存在实数p,使得数列{$\frac{1}{{a}_{n}}$}满足:可以从中取出无限多项并按原来的先后次序排成一个等差数列?若存在,求出所有满足条件的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设函数f(x)=$\left\{\begin{array}{l}{-x,x≤0}\\{{x}^{2},x>0}\end{array}\right.$,若f(a)=4,则由实数a的值构成的集合是{-4,2}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下列命题正确的是(  )
A.圆柱的轴是经过圆柱上、下底面圆的圆心的直线
B.圆柱的母线是连接圆柱上底面和下底面上一点的直线
C.矩形较长的一条边所在直线才可以作为旋转轴
D.有两个面平行,其余各面都是平行四边形的几何体叫棱柱

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知$|{\overrightarrow a}$|=1,$|{\overrightarrow b}$|=2,$\overrightarrow a$,$\overrightarrow b$的夹角为120°,$\overrightarrow a$+$\overrightarrow b$+$\overrightarrow c$=$\overrightarrow 0$,则$\overrightarrow a$与$\overrightarrow c$的夹角为$\frac{π}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列函数中,y的最小值为4的是(  )
A.$y=x+\frac{4}{x}$B.$y=sinx+\frac{4}{sinx}(0<x<π)$
C.$y={log_2}x+\frac{4}{{{{log}_2}x}}$D.$y={e^x}+\frac{4}{e^x}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若θ∈[${\frac{π}{4}$,$\frac{π}{2}}$],sin2θ=$\frac{{3\sqrt{7}}}{8}$,则sinθ=(  )
A.$\frac{3}{5}$B.$\frac{4}{5}$C.$\frac{\sqrt{7}}{4}$D.$\frac{3}{4}$

查看答案和解析>>

同步练习册答案