分析 由已知得到$\overrightarrow{a}•\overrightarrow{b}$=-1,$\overrightarrow{c}=-(\overrightarrow{a}+\overrightarrow{b})$,求出|$\overrightarrow{c}$|,再由cos<$\overrightarrow{a},\overrightarrow{c}$>=$\frac{\overrightarrow{a}•\overrightarrow{c}}{|\overrightarrow{a}||\overrightarrow{c}|}$=$\frac{\overrightarrow{a}•(-\overrightarrow{a}-\overrightarrow{b})}{2}$求解.
解答 解:∵|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=2,$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为120°,
∴$\overrightarrow{a}•\overrightarrow{b}$=|$\overrightarrow{a}$||$\overrightarrow{b}$|cos120°=-1,由$\overrightarrow a$+$\overrightarrow b$+$\overrightarrow c$=$\overrightarrow 0$,
得到$\overrightarrow{a}+\overrightarrow{b}=-\overrightarrow{c}$,
∴|$\overrightarrow{c}$|=|$\overrightarrow{a}+\overrightarrow{b}$|=$\sqrt{(\overrightarrow{a}+\overrightarrow{b})^{2}}$=$\sqrt{{\overrightarrow{a}}^{2}+2\overrightarrow{a}•\overrightarrow{b}+{\overrightarrow{b}}^{2}}$=$\sqrt{4}$=2,
∴cos<$\overrightarrow{a},\overrightarrow{c}$>=$\frac{\overrightarrow{a}•\overrightarrow{c}}{|\overrightarrow{a}||\overrightarrow{c}|}$=$\frac{\overrightarrow{a}•(-\overrightarrow{a}-\overrightarrow{b})}{2}$=0,
∴$\overrightarrow a$与$\overrightarrow c$的夹角为$\frac{π}{2}$.
故答案为:$\frac{π}{2}$.
点评 本题考查了平面向量的数量积公式的运用求向量的夹角.关键是公式的熟练运用,是中档题.
科目:高中数学 来源: 题型:选择题
| A. | 2015 | B. | 2016 | C. | 4030 | D. | 4032 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (1,3) | B. | (-1,3) | C. | (-1,-3) | D. | (-3,-1) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 正三角形的直观图是正三角形 | B. | 平行四边形的直观图是平行四边形 | ||
| C. | 矩形的直观图是矩形 | D. | 圆的直观图是圆 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com