精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ax+lnx(a∈R).
(1)若a=1,求曲线处切线的斜率;
(2)求函数f(x)的单调增区间;
(3)设g(x)=2x,若对任意x1∈(0,+∞),存在x2∈[0,1],使f(x1)<g(x2),求实数a的取值范围.
【答案】分析:(1)运用求导数法则,得f'(x)=1+,从而得到曲线处切线的斜率k=f'()=3;
(2)首先f'(x)=a+,(x>0),再根据a的正负讨论f'(x)的取值,可得当a≥0时,函数f(x)=ax+lnx是(0,+∞)上的增函数;当a<0时,f(x)=ax+lnx在(0,-)上为增函数,在(-,+∞)上为减函数.
(3)由题意,得f(x1)在(0,+∞)上的最大值小于g(x2)在[0,1]上的最大值.由指数函数单调性可得g(x2)在[0,1]上的最大值为g(1)=2,从而得到f(x1)在(0,+∞)上的最大值小于2.再结合(2)中函数单调性的结论,列出不等式并解之,即可得到实数a的取值范围为(-∞,-).
解答:解:(1)a=1时,f(x)=x+lnx
∴f'(x)=1+,可得f'()=3
∴曲线处切线的斜率k=f'()=3
(2)由题意,得f'(x)=a+,(x>0)
∴当a≥0时,f'(x)>0在(0,+∞)上恒成立;
当a<0时,f'(x)=a+在(0,-)上为正数,在(-,+∞)上为负数
由此可得:当a≥0时,函数f(x)=ax+lnx是(0,+∞)上的增函数;
当a<0时,f(x)=ax+lnx在(0,-)上为增函数,在(-,+∞)上为减函数
(3)由题意,得f(x1)在(0,+∞)上的最大值小于g(x2)在[0,1]上的最大值.
∵g(x)=2x,[0,1]上是增函数
∴g(x2)在[0,1]上的最大值为g(1)=2
即f(x1)在(0,+∞)上的最大值小于2
当a≥0时,函数f(x)=ax+lnx是(0,+∞)上的增函数,f(x1)没有最大值;
当a<0时,f(x1)在(0,+∞)上的最大值为f(-)=-1+ln(-)<2
解之得a,可得实数a的取值范围为(-∞,-).
点评:本题给出含有对数的基本初等函数,讨论函数的单调性并解决不等式恒成立的问题,着重考查了利用导数研究函数的单调性、导数的几何意义和含有参数不等式的讨论等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)当a∈[-2,
1
4
)
时,求f(x)的最大值;
(2)设g(x)=[f(x)-lnx]•x2,k是g(x)图象上不同两点的连线的斜率,否存在实数a,使得k≤1恒成立?若存在,求a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•海淀区二模)已知函数f(x)=a-2x的图象过原点,则不等式f(x)>
34
的解集为
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a|x|的图象经过点(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0
(1)若a•b>0,判断函数f(x)的单调性;
(2)若a=-3b,求f(x+1)>f(x)时的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-2|x|+1(a≠0),定义函数F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 给出下列命题:①F(x)=|f(x)|; ②函数F(x)是奇函数;③当a<0时,若mn<0,m+n>0,总有F(m)+F(n)<0成立,其中所有正确命题的序号是
 

查看答案和解析>>

同步练习册答案