分析 根据f(3x)=3f(x)得出f(x)在(3n,3n+1)上的对称轴,根据对称性求出零点之和.
解答 解:∵当x∈[1,3)时,f(x)=1-|x-2|,
∴f(x)在(1,3)上的函数图象关于直线x=2对称,
∵f(3x)=3f(x),
∴f(x)在(3,9)上的图象关于直线x=6对称.
同理可得:f(x)在(3n,3n+1)上的图象关于直线x=2•3n对称,
∵f(2)=1<a,f(6)=3f(2)=3>a,
∴F(x)在(0,3)上无零点,
∴x1+x2=2•2•3=4•3,x3+x4=2•2•32=4•32,…,x2n-1+x2n=4•3n,
∴x1+x2+…+x2n=4×3+4×32+…+4×3n=4×$\frac{3(1-{3}^{n})}{1-3}$=6(3n-1).
故答案为:6(3n-1).
点评 本题考查了函数的图象与性质、区间转换、对称性、等比数列的前n项和公式等基础知识与基本技能,属于难题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4985 | B. | 8185 | C. | 9970 | D. | 24555 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 月份i | 7 | 8 | 9 | 10 | 11 | 12 |
| 销售单价xi(元) | 9 | 9.5 | 10 | 10.5 | 11 | 8 |
| 销售量yi(件) | 11 | 10 | 8 | 6 | 5 | 14 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com