精英家教网 > 高中数学 > 题目详情
16.已知函数f(x)=2x3-3x,若过点P(1,t)存在3条直线与曲线y=f(x)相切,则t的取值范围为(  )
A.(-∞,-3)B.(-3,-1)C.(-1,+∞)D.(0,1)

分析 设出切点,由斜率的两种表示得到等式,化简得三次函数,将题目条件化为函数有三个零点,得解.

解答 解:设过点P(1,t)的直线与曲线y=f(x)相切于点(x,2x3-3x),
则$\frac{2{x}^{3}-3x-t}{x-1}$=6x2-3,
化简得,4x3-6x2+3+t=0,
令g(x)=4x3-6x2+3+t,
则令g′(x)=12x(x-1)=0,
则x=0,x=1.
g(0)=3+t,g(1)=t+1,
又∵过点P(1,t)存在3条直线与曲线y=f(x)相切,
则(t+3)(t+1)<0,
解得,-3<t<-1.
故选:B.

点评 本题主要考查利用导数求切线方程等知识,考查转化思想的运用能力和运算能力,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.函数y=$\sqrt{12-2x}$+$\sqrt{x-1}$的最大值为$\sqrt{15}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知定义在实数解R上的函数f(x)满足f(1)=2,且f(x)的导函数f′(x)在R上恒有f′(x)<1,则不等式f(x)<x+1的解集为(  )
A.(-1,1)B.(-∞,-1)C.(1,+∞)D.(-∞,-1)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,在四棱锥P-ABCD中,底面ABCD是边长为2的正方形,侧面PAD⊥底面ABCD,且PA=PD=$\frac{{\sqrt{2}}}{2}$AD,E、F分别为PC、BD的中点.
(1)求证:EF∥平面PAD;
(2)求证:面PAB⊥平面PDC;
(3)求直线BD与平面PCD所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.化简下列各式:
(1)2$\sqrt{3}$×$\root{3}{1.5}×\root{6}{12}$;
(2)$\frac{{a}^{\frac{4}{3}}-8{a}^{\frac{1}{3}}b}{4{b}^{\frac{2}{3}}+2\root{3}{ab}+{a}^{\frac{2}{3}}}$$÷(1-2\root{3}{\frac{b}{a}})×\root{3}{a}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.直线3cosθ•x+$\sqrt{3}$y-a=0的倾斜角的取值范围是0≤α≤$\frac{π}{3}$或$\frac{2π}{3}$≤α<π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若120是一个数列的一项,则这个数列是(  )
A.{n2+1}B.{n2-1}C.{n2-2n+1}D.{n2-n-1}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设集合A={x|tx+1=0},若A⊆{1,2},则实数t的取值范围是{0,-1,-$\frac{1}{2}$}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.求集合A={a,b,c}到集合B={-1,1}的映射个数.

查看答案和解析>>

同步练习册答案