精英家教网 > 高中数学 > 题目详情

【题目】选修4-4:参数方程与极坐标系

在平面直角坐标系中,直线的参数方程为为参数, 为倾斜角),以坐标原点O为极点, 轴的正半轴为极轴的极坐标系中,曲线的极坐标方程为

1)求曲线的直角坐标方程,并 C的焦点F的直角坐标;

2)已知点,若直线C相交于A,B两点,且,求的面积.

【答案】1 2

【解析】试题分析:(1根据曲线的极坐标方程为直角坐标方程根据抛物线性质得焦点直角坐标(2利用直线参数方程几何意义化简联立直线参数方程与抛物线方程,利用韦达定理代入化简得从而可得即得的面积.

试题解析:(Ⅰ)原方程变形为,

C的直角坐标方程为,其焦点为

(Ⅱ)把的方程代入

平方得

把①代入②得是直线的倾斜角,

的普通方程为

∴△FAB的面积为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}的前n项和为 ,且a1与a5的等差中项为18.
(1)求{an}的通项公式;
(2)若an=2log2bn , 求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图(1)五边形中,

,沿折到的位置,得到四棱锥,如图(2),点为线段的中点,且平面.

1)求证:平面平面

2)若直线与所成角的正切值为,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)是定义在R上的偶函数,在[0,+∞)上单调递增.若a=f(log ),b=f(log ),c=f(﹣2),则a,b,c的大小关系是(
A.a>b>c
B.b>c>a
C.c>b>a
D.c>a>b

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知过原点的动直线l与圆C1:x2+y2﹣6x+5=0相交于不同的两点A,B.
(1)求圆C1的圆心坐标;
(2)求线段AB 的中点M的轨迹C的方程;
(3)是否存在实数 k,使得直线L:y=k(x﹣4)与曲线 C只有一个交点?若存在,求出k的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|﹣2≤x≤5},集合B={x|p+1≤x≤2p﹣1},若A∩B=B,求实数p的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)是定义在R上的奇函数,且当x>0时,f(x)=x2﹣4x+3.
(1)求f[f(﹣1)]的值;
(2)求函数f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,BC=4,且sinB,sinA,sinC成等差数列,建立适当的直角坐标系,求点A的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,已知点A(1,0),D(﹣1,0),点B,C在单位圆O上,且∠BOC=

(1)若点B( ),求cos∠AOC的值;
(2)设∠AOB=x(0<x< ),四边形ABCD的周长为y,将y表示成x的函数,并求出y的最大值.

查看答案和解析>>

同步练习册答案