精英家教网 > 高中数学 > 题目详情
10.已知函数f(x)=ex-$\frac{1}{{e}^{|x|}}$.
(1)若f(x)=2,求x的值;
(2)若etf(2t)+mf(t)≥0对t∈[1,2]恒成立,求实数m的取值范围.

分析 (1)当x≤0时得到f(x)=0而f(x)=2,所以无解;当x>0时解出f(x)=2求出x即可;
(2)由 t∈[1,2]时,etf(2t)+mf(t)≥0恒成立得到,得到f(t)=et-e-t,代入得到m的范围即可.

解答 解:(1)当x≤0时f(x)=0,
当x>0时,f(x)=ex-e-x
由条件可得,ex-e-x=2,
即e2x-2×ex-1=0,解得ex=1±$\sqrt{2}$,∵ex>0,
∴ex=1+$\sqrt{2}$,
∴x=ln(1+$\sqrt{2}$).
(2)当t∈[1,2]时,etf(2t)+mf(t)≥0,
即m(e2t-1)≥-(e4t-1).∵e2t-1>0,∴m≥-(e2t+1).
∵t∈[1,2],∴-(1+e2t)∈[-1-e4,-1+e],
故m的取值范围是[e-1,+∞).

点评 本题主要考查了函数恒成立问题.属于基础题.恒成立问题多需要转化,因为只有通过转化才能使恒成立问题等到简化;转化过程中往往包含着多种数学思想的综合运用,同时转化过程更提出了等价的意识和要求.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.若函数f(x)为奇函数,且当x>0时,f(x)=10x,则当x≤0,f(x)=$\left\{\begin{array}{l}{0,x=0}\\{-1{0}^{-x},x<0}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如图,已知△ABC,CD为∠ACB的角平分线,沿直线CD将△ACD翻折成△A′CD,所成二面角A′-CD-B的平面角为θ,则(  )
A.∠A′DB≤θ,∠A′CB≤θB.∠A′DB≤θ,∠A′CB≥θC.∠A′DB≥θ,∠A′CB≤θD.∠A′DB≥θ,∠A′CB≥θ

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知曲线y=f(x)在x=5处的切线方程是y=-x+8,则f(5)与f′(5)分别为(  )
A.3,3B.3,-1C.-1,3D.-1,-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响,对近8年的年宣传费x1和年销售量y1(i=1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.

$\overrightarrow x$$\overrightarrow y$$\overrightarrow w$$\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}$$\sum_{i=1}^n{{{({w_i}-\overline w)}^2}}$$\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}$$\sum_{i=1}^n{({w_i}-\overline w)({y_i}-\overline y)}$
46.656.36.8289.81.61469108.8
表中w1=$\sqrt{x}$1,$\overrightarrow w$=$\frac{1}{8}$$\sum_{i=1}^n{w_i}$
(Ⅰ)根据散点图判断,y=a+bx与y=c+d$\sqrt{x}$哪一个适宜作为年销售量y关于年宣传费x的回归方程类型?(给出判断即可,不必说明理由)
(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y关于x的回归方程;
(Ⅲ)已知这种产品的年利率z与x、y的关系为z=0.2y-x.根据(Ⅱ)的结果回答下列问题:
(1)年宣传费x=49时,年销售量及年利润的预报值是多少?
(2)年宣传费x为何值时,年利率的预报值最大?
附:对于一组数据(u1,v1),(u2,v2),…,(un,vn),其回归线v=α+βu的斜率和截距的最小二乘估计分别为:$\widehatβ$=$\frac{{\sum_{i=1}^n{({u_i}-\overline u)({v_i}-\overline{v)}}}}{{\sum_{i=1}^n{{{({u_i}-\overline u)}^2}}}}$,$\widehatα$=$\overline v$-$\widehatβ\overline u$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.某种产品的广告费支出x(单位:万元)与销售额y(单位:万元)之间有如表对应数据:
x24568
y3040605070
(Ⅰ)求回归直线方程;
(Ⅱ)试预测广告费支出为10万元时,销售额多大?
附:回归直线的斜率和截距的最小二乘估计公式分别为:$\left\{\begin{array}{l}\widehatb=\frac{{\sum_{i=1}^n({x_i}-\overline x)({y_i}-\overline y)}}{{\sum_{i=1}^n{{({x_i}-\overline x)}^2}}}=\frac{{\sum_{i=1}^n{x_i}{y_i}-n\overline x•\overline y}}{{\sum_{i=1}^n{x_i}^2-n{{\overline x}^2}}}\\ \widehat a=\overline y-\widehatb\overline x\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.假设关于某设备使用年限x(年)和所支出的维修费用y(万元)有如下统计资料:x=2,3,4,5,6分别对应y=2.2,3.8,5.5,6.5,7.0.若资料知,y对x呈线性相关关系,试求:
(1)$\overline{x}$,$\overline{y}$及回归直线方程;
(2)估计使用年限为10年时,维修费用约是多少?
提示:回归直线方程y=bx+a,b=$\frac{\sum_{i=1}^{5}{x}_{i}{y}_{i}-5\overline{xy}}{\sum_{i=1}^{5}{x}_{i}^{2}-5{\overline{x}}^{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.为了研究新招工人对某产品的熟练掌握程度,从某车间中随机抽取了5名工人,其上机天数x和每天生产产品的个数y如表所示:
上机天数x1020304050
产品个数y/天62 758189
根据上表提供的数据,求得y关于x的线性回归方程为$\widehat{y}$=0.67x+54.9,由于表中有一个数据模糊不清,请你推断出该数据的值为(  )
A.67B.68C.68.3D.71

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知全集U=R,集合M={x|x2-x≤0}与集合N={x|f(x)=ln(1-|x|)}的关系的韦恩(Venn)图如图所示,则阴影部分所示的集合为(  )
A.{x|0≤x<1}B.{x|0<x<1}C.{x|0≤x≤1}D.{x|-1<x<1}

查看答案和解析>>

同步练习册答案