精英家教网 > 高中数学 > 题目详情
6.设m和n均为给定的大于1的自然数,集合M={0,1,2,…,m-1},A={x|x=x1+x2m+…+xnmn-1,xi∈M,i=1,2,…,n},设s,t∈A,s=a1+a2m+…+anmn-1,t=b1+b2m+…+bnmn-1,其中ai、bi∈M,i=1,2,…,n,则an<bn是s<t的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

分析 由已知及其an<bn⇒s<t;反之不成立,即可判断出.

解答 解:∵m和n均为给定的大于1的自然数,ai、bi∈M,i=1,2,…,n,则an<bn⇒s=a1+a2m+…+anmn-1<b1+b2m+…+bnmn-1=t;
反之不成立,例如取2≤i≤n,ai<bi,a1=b1,则s<t推不出an<bn
因此an<bn是s<t的充分不必要条件.
故选:A.

点评 本题考查了集合的性质、数列求和、充要条件的判定,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.若数列{an}前n项和Sn=$\frac{n({a}_{1}+{a}_{n})}{2}$(n∈N*),则{an}成等差数列,通过类比,若数列{bn}满足bn>0且前n项积Tn=$({b}_{1}{b}_{n})^{\frac{n}{2}}$,则{bn}成等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知正数a、b、c满足b2+ab+bc+ac=15,则5a+8b+3c的最小值为(  )
A.25B.30C.8$\sqrt{15}$D.32

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知l:y=kx+b为曲线y=f(x)的“渐近线”,给出定义域均为D={x|x>1}的函数如下:
①f(x)=$\sqrt{x}$;
②f(x)=$\frac{2x-3}{x}$;
③f(x)=$\frac{{x}^{2}+1}{x}$;
④f(x)=$\frac{xlnx+1}{lnx}$;
⑤f(x)=2(x-1-e-x).
其中,曲线y=f(x)存在“渐近线”的有(将序号填到横线上)②③④⑤.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知方程x2+ax+b=0在区间(-1,2),(2,3)内分别有一个实根,试求ω=a-4b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.不等式$\left\{\begin{array}{l}{5x+3y≤15}\\{y≤x+1}\\{x-5y≤3}\end{array}\right.$,表示的平面区域的面积为7.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设F是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的焦点,过F做双曲线一条渐近线的垂线与两条渐近线交于P,Q,若$\overline{FP}$=4$\overline{FQ}$,则双曲线的离心率是$\frac{2\sqrt{6}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=x-alnx,g(x)=-$\frac{1+a}{x}$(a>0).
(Ⅰ)若a=1,求函数f(x)的极值;
(Ⅱ)设函数h(x)=f(x)-g(x),求函数h(x)的单调区间;
(Ⅲ)若存在x0∈[1,e],使得f(x0)<g(x0)成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知两点M(-1,0),N(1,0),若直线y=k(x-2)上至少存在三个点P,使得△MNP是直角三角形,则实数k的取值范围是(  )
A.[-5,5]B.[-$\frac{1}{3}$,$\frac{1}{3}$]C.[-$\frac{1}{3}$,0)∪(0,$\frac{1}{3}$]D.[-$\frac{\sqrt{3}}{3}$,0)∪(0,$\frac{\sqrt{3}}{3}$]

查看答案和解析>>

同步练习册答案