| A. | [-5,5] | B. | [-$\frac{1}{3}$,$\frac{1}{3}$] | C. | [-$\frac{1}{3}$,0)∪(0,$\frac{1}{3}$] | D. | [-$\frac{\sqrt{3}}{3}$,0)∪(0,$\frac{\sqrt{3}}{3}$] |
分析 k=0时,M、N、P三点共线,构不成三角形,故k≠0,然后分三种情况分析,即∠PMN,∠PNM,∠MPN为直角,若△MNP是直角三角形,由直径对的圆周角是直角,知直线和以MN为直径的圆有公共点即可,由此能求出实数k的取值范围.
解答
解:当k=0时,M、N、P三点共线,构不成三角形,
∴k≠0,
如图所示,
△MNP是直角三角形,有三种情况:
当M是直角顶点时,直线上有唯一点P1点满足条件;
当N是直角顶点时,直线上有唯一点P3满足条件;
当P是直角顶点时,此时至少有一个点P满足条件.
由直径对的圆周角是直角,知直线和以MN为直径的圆有公共点即可,
则$\frac{|2k|}{\sqrt{{k}^{2}+1}}≤1$,解得-$\frac{\sqrt{3}}{3}≤k≤\frac{\sqrt{3}}{3}$,且k≠0.
∴实数k的取值范围是[-$\frac{\sqrt{3}}{3},0$)∪(0,$\frac{\sqrt{3}}{3}$].
故选:D.
点评 本题考查直线与圆的位置关系,考查数形结合及分类讨论的数学思想方法,是中档题.
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充要条件 | B. | 充分不必要条件 | ||
| C. | 必要不充分条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | k<132? | B. | k<70? | C. | k<64? | D. | k<63? |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com