精英家教网 > 高中数学 > 题目详情
11.复数z与复数i(1-2i)互为共轭复数,则z=(  )
A.-2+iB.-2-iC.2-iD.2+i

分析 直接由复数代数形式的乘法运算化简i(1-2i),再由复数z与复数i(1-2i)互为共轭复数,即可求出答案.

解答 解:i(1-2i)=i-2i2=2+i,
∵复数z与复数i(1-2i)互为共轭复数,
∴z=2-i.
故选:C.

点评 本题考查了复数代数形式的乘除运算,考查了共轭复数的求法,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.函数y=$\frac{x}{1+x}$的图象是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数f(x)的定义域为(-1,1),则函数f(2x+1)的定义域为(-1,0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知曲线C的参数方程为$\left\{\begin{array}{l}x=3+\sqrt{5}cosα\\ y=1+\sqrt{5}sinα\end{array}$(α为参数),以直角坐标系原点为极点,x轴正半轴为极轴建立极坐标系.
(1)求曲线C的极坐标方程;
(2)若直线的极坐标方程为sinθ-cosθ=$\frac{1}{ρ}$,求直线被曲线C截得的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知数列{an}的前n项和为Sn,且a2an=S2+Sn 对一切整数n都成立.
(1)求a1,a2的值
(2)若a1>0,设数列{bn}的前n项和为Tn,且满足bn=lg$\frac{10{a}_{1}}{{a}_{n}}$,证明{bn}是等差数列;
(3)当n为何值时,Tn 最大?并求出Tn的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知p=a+$\frac{1}{a-2}\;\;(a>2)$,q=-b2-2b+3(b∈R),则p,q的大小关系为(  )
A.p≥qB.p≤qC.p>qD.p<q

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某企业投资1千万元用于一个高科技项目,每年可获利25%.由于企业间竞争激烈,每年底需要从利润中取出资金200万元进行科研、技术改造与广告投入,方能保持原有的利润增长率.经过多少年后,该项目的资金可以达到4倍的目标?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知指数函数y=g(x)满足:g(3)=8,定义域为R的函数f(x)=$\frac{n-g(x)}{m+2g(x)}$是奇函数.
(Ⅰ)确定y=g(x),y=f(x)的解析式;
(Ⅱ)若h(x)=f(x)+a在(-1,1)上有零点,求a的取值范围;
(Ⅲ)若对任意的t∈(-1,4),不等式f(2t-3)+f(t2-k)<0恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知数列{an}为单调递减的等差数列,a1+a2+a3=21,且a1-1,a2-3,a3-3成等比数列.
(1)求数列{an}的通项公式;
(2)设bn=|an|,求数列{bn}的前项n和Tn

查看答案和解析>>

同步练习册答案