精英家教网 > 高中数学 > 题目详情
20.已知指数函数y=g(x)满足:g(3)=8,定义域为R的函数f(x)=$\frac{n-g(x)}{m+2g(x)}$是奇函数.
(Ⅰ)确定y=g(x),y=f(x)的解析式;
(Ⅱ)若h(x)=f(x)+a在(-1,1)上有零点,求a的取值范围;
(Ⅲ)若对任意的t∈(-1,4),不等式f(2t-3)+f(t2-k)<0恒成立,求实数k的取值范围.

分析 (Ⅰ)设g(x)=ax(a>0且a≠1),根据g(3)=8求得a的值,根据f(0)=0求得n的值,根据f(-1)=-f(1),求得m的值,可得y=g(x),y=f(x)的解析式.
(Ⅱ)若h(x)=f(x)+a在(-1,1)上有零点,则h(-1)h(1)<0,由此求得a的取值范围.
(Ⅲ)由题意利用函数的奇偶性、单调性可得,对一切t∈(1,4),有t2+2t-3>k恒成立,求得t2+2t-3的最小值,可得k的范围.

解答 解:(Ⅰ)设g(x)=ax(a>0且a≠1),∵g(3)=8,∴a3=8,解得a=2,∴g(x)=2x
∴$f(x)=\frac{{n-{2^x}}}{{m+{2^{x+1}}}}$,
∵函数f(x)是定义域为R的奇函数,∴f(0)=0,∴$\frac{n-1}{2+m}=0$=0,∴n=1,∴$f(x)=\frac{{1-{2^x}}}{{m+{2^{x+1}}}}$.
又f(-1)=-f(1),∴$\frac{{1-\frac{1}{2}}}{m+1}=-\frac{1-2}{4+m}$,解得m=2,∴$f(x)=\frac{{1-{2^x}}}{{2+{2^{x+1}}}}$.
(Ⅱ)由(Ⅰ)知$f(x)=\frac{{1-{2^x}}}{{2+{2^{x+1}}}}=-\frac{1}{2}+\frac{1}{{{2^x}+1}}$,又h(x)=f(x)+a在(-1,1)上有零点,
从而h(-1)h(1)<0,即$({-\frac{1}{2}+\frac{1}{{\frac{1}{2}+1}}+a})({-\frac{1}{2}+\frac{1}{2+1}+a})<0$,
∴(a+$\frac{1}{6}$)(a-$\frac{1}{6}$)<0,∴-$\frac{1}{6}$<a<$\frac{1}{6}$,∴a的取值范围为(-$\frac{1}{6}$,$\frac{1}{6}$).
(Ⅲ)由(Ⅰ)知$f(x)=\frac{{1-{2^x}}}{{2+{2^{x+1}}}}=-\frac{1}{2}+\frac{1}{{{2^x}+1}}$,易知f(x)在R上为减函数,
又f(x)是奇函数,∴f(2t-3)+f(t-k)<0,∴f(2t-3)<-f(t-k)=f(k-t),
∵f(x)在R上为减函数,由上式得2t-3>k-t2
即对一切t∈(1,4),有t2+2t-3>k恒成立,
令m(t)=t2+2t-3,t∈(1,4),易知m(t)>-4,
∴k≤-4,即实数k的取值范围是(-∞,-4].

点评 本题主要考查指数函数的定义,用待定系数法求函数的解析式,函数零点的判定定理,函数的恒成立问题,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知数列{an}满足a1=1,an+1=3an+1
(1)证明{an+$\frac{1}{2}$}是等比数列,并求{an}的通项公式
(2)若bn=(2n-1)(2an+1),求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.复数z与复数i(1-2i)互为共轭复数,则z=(  )
A.-2+iB.-2-iC.2-iD.2+i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知集合A={1,2,k},B={1,2,3,5},若A∪B={1,2,3,5},则k=3或5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.函数y=${({\frac{1}{2}})^{2{x^2}-3x+1}}$的递减区间为(  )
A.(1,+∞)B.(-∞,$\frac{3}{4}$]C.(-∞,1)D.[$\frac{3}{4}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知数列{an}满足a1=1,an2=(2an+1)an+1(n∈N*).
(1)求a2、a3的值;
(2)求数列{an}的通项公式;
(3)求证:$\sum_{i=1}^n{\frac{{8{a_i}}}{{1+{a_i}}}}$<7.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知函数f(x)=$\left\{\begin{array}{l}{|lgx|,0<x≤10}\\{-\frac{1}{10}x+2,x>10}\end{array}\right.$,若a,b,c互不相等,且f(a)=f(b)=f(c),则abc的取值范围是(10,20).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数f(x)=$\left\{\begin{array}{l}{x^2}+3a,x<0\\{log_a}({x+1})+1,x≥0\end{array}$(a>0且a≠1)在R上单调递减,且关于x的方程|f(x)|=2-x恰好有两个不相等的实数解,则a的取值范围是$[{\frac{1}{3},\frac{2}{3}}]∪\left\{{\frac{3}{4}}\right\}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数f(x)=2x3-ax+6的一个单调递增区间为[1,+∞),则减区间是(  )
A.(-∞,0)B.(-1,1)C.(0,1)D.(-∞,1),(0,1)

查看答案和解析>>

同步练习册答案