分析 (Ⅰ)设g(x)=ax(a>0且a≠1),根据g(3)=8求得a的值,根据f(0)=0求得n的值,根据f(-1)=-f(1),求得m的值,可得y=g(x),y=f(x)的解析式.
(Ⅱ)若h(x)=f(x)+a在(-1,1)上有零点,则h(-1)h(1)<0,由此求得a的取值范围.
(Ⅲ)由题意利用函数的奇偶性、单调性可得,对一切t∈(1,4),有t2+2t-3>k恒成立,求得t2+2t-3的最小值,可得k的范围.
解答 解:(Ⅰ)设g(x)=ax(a>0且a≠1),∵g(3)=8,∴a3=8,解得a=2,∴g(x)=2x.
∴$f(x)=\frac{{n-{2^x}}}{{m+{2^{x+1}}}}$,
∵函数f(x)是定义域为R的奇函数,∴f(0)=0,∴$\frac{n-1}{2+m}=0$=0,∴n=1,∴$f(x)=\frac{{1-{2^x}}}{{m+{2^{x+1}}}}$.
又f(-1)=-f(1),∴$\frac{{1-\frac{1}{2}}}{m+1}=-\frac{1-2}{4+m}$,解得m=2,∴$f(x)=\frac{{1-{2^x}}}{{2+{2^{x+1}}}}$.
(Ⅱ)由(Ⅰ)知$f(x)=\frac{{1-{2^x}}}{{2+{2^{x+1}}}}=-\frac{1}{2}+\frac{1}{{{2^x}+1}}$,又h(x)=f(x)+a在(-1,1)上有零点,
从而h(-1)h(1)<0,即$({-\frac{1}{2}+\frac{1}{{\frac{1}{2}+1}}+a})({-\frac{1}{2}+\frac{1}{2+1}+a})<0$,
∴(a+$\frac{1}{6}$)(a-$\frac{1}{6}$)<0,∴-$\frac{1}{6}$<a<$\frac{1}{6}$,∴a的取值范围为(-$\frac{1}{6}$,$\frac{1}{6}$).
(Ⅲ)由(Ⅰ)知$f(x)=\frac{{1-{2^x}}}{{2+{2^{x+1}}}}=-\frac{1}{2}+\frac{1}{{{2^x}+1}}$,易知f(x)在R上为减函数,
又f(x)是奇函数,∴f(2t-3)+f(t-k)<0,∴f(2t-3)<-f(t-k)=f(k-t),
∵f(x)在R上为减函数,由上式得2t-3>k-t2,
即对一切t∈(1,4),有t2+2t-3>k恒成立,
令m(t)=t2+2t-3,t∈(1,4),易知m(t)>-4,
∴k≤-4,即实数k的取值范围是(-∞,-4].
点评 本题主要考查指数函数的定义,用待定系数法求函数的解析式,函数零点的判定定理,函数的恒成立问题,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (1,+∞) | B. | (-∞,$\frac{3}{4}$] | C. | (-∞,1) | D. | [$\frac{3}{4}$,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,0) | B. | (-1,1) | C. | (0,1) | D. | (-∞,1),(0,1) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com