精英家教网 > 高中数学 > 题目详情
5.已知数列{an}满足a1=1,an2=(2an+1)an+1(n∈N*).
(1)求a2、a3的值;
(2)求数列{an}的通项公式;
(3)求证:$\sum_{i=1}^n{\frac{{8{a_i}}}{{1+{a_i}}}}$<7.

分析 (1)利用递推关系,取n=1,2即可得出.
(2)an2=(2an+1)an+1(n∈N*),两边取倒数可得:$1+\frac{1}{{a}_{n+1}}$=$(1+\frac{1}{{a}_{n}})^{2}$,取对数利用等比数列的通项公式即可得出.
(3)由(2)得$\frac{a_n}{{{a_n}+1}}={({\frac{1}{2}})^{{2^{n-1}}}}$,利用二项式定理进行放缩,再利用函数的单调性与数列的单调性即可得出.

解答 (1)解:由已知得${a_{n+1}}=\frac{a_n^2}{{2{a_n}+1}},{a_2}=\frac{a_1^2}{{2{a_1}+1}}=\frac{1}{3}$,${a_3}=\frac{a_2^2}{{2{a_2}+1}}=\frac{1}{15}$.
(2)解:由已知得an>0,∴$\frac{1}{{a}_{n+1}}$=$\frac{2{a}_{n}+1}{{a}_{n}^{2}}$=$(1+\frac{1}{{a}_{n}})^{2}$-1,∴$1+\frac{1}{{a}_{n+1}}$=$(1+\frac{1}{{a}_{n}})^{2}$,
取对数可得:$lg({1+\frac{1}{{{a_{n+1}}}}})=lg{({1+\frac{1}{a_n}})^2}=2lg({1+\frac{1}{a_n}})$,
数列$\left\{{lg({1+\frac{1}{a_n}})}\right\}$是首项为$lg({1+\frac{1}{a_1}})=lg2$,公比为2的等比数列,
因此$lg({1+\frac{1}{a_n}})={2^{n-1}}lg2=lg{2^{{2^{n-1}}}},1+\frac{1}{a_n}={2^{{2^{n-1}}}},{a_n}=\frac{1}{{{2^{{2^{n-1}}}}-1}}$.
(3)证明:由(2)得$\frac{a_n}{{{a_n}+1}}={({\frac{1}{2}})^{{2^{n-1}}}}$,
因此$\sum_{i=1}^n{\frac{a_i}{{1+{a_i}}}=\frac{a_1}{{1+{a_1}}}+\frac{a_2}{{1+{a_2}}}+…+\frac{a_n}{{1+{a_n}}}=\frac{1}{2}+{{({\frac{1}{2}})}^2}}+({\frac{1}{2}}){2^2}+…+{({\frac{1}{2}})^{{2^{n-1}}}}$,
由于${2^{n-1}}=1+C_{n-1}^1+C_{n-1}^2+…+C_{n-1}^{n-1}$,当n≥4时,${2^{n-1}}=1+C_{n-1}^1+C_{n-1}^2+…+C_{n-1}^{n-1}>n+1$,
当n≥4时,${({\frac{1}{2}})^{{2^{n-1}}}}<{({\frac{1}{2}})^{n+1}}$,$\sum_{i=1}^n{\frac{a_i}{{1+{a_i}}}}<\frac{1}{2}+{({\frac{1}{2}})^2}+{({\frac{1}{2}})^{2^2}}+[{{{({\frac{1}{2}})}^5}+{{({\frac{1}{2}})}^6}+…+{{({\frac{1}{2}})}^{n+1}}}]$=$\frac{1}{2}+\frac{1}{4}+\frac{1}{16}+\frac{{{{({\frac{1}{2}})}^5}[{1-{{({\frac{1}{2}})}^{n-3}}}]}}{{1-\frac{1}{2}}}=\frac{7}{8}-{({\frac{1}{2}})^{n+1}}<\frac{7}{8}$,所以$\sum_{i=1}^n{\frac{{8{a_i}}}{{1+{a_i}}}<7}$.
不难验证当n=1,2,3时,不等式$\sum_{i=1}^n{\frac{{8{a_i}}}{{1+{a_i}}}<7}$也成立,
综上所述,$\sum_{i=1}^n{\frac{{8{a_i}}}{{1+{a_i}}}<7}$.

点评 本题考查了数列递推关系、等比数列的通项公式与求和公式、二项式定理、函数的单调性与数列的单调性,考查了推理能力与计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.过点P作圆(x+1)2+(y-2)2=1的切线,切点为M,若|PM|=|PO|(O为原点),则|PM|的最小值是(  )
A.$\frac{2\sqrt{5}}{5}$B.$\frac{\sqrt{5}}{2}$C.$\frac{3\sqrt{5}-5}{5}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知p=a+$\frac{1}{a-2}\;\;(a>2)$,q=-b2-2b+3(b∈R),则p,q的大小关系为(  )
A.p≥qB.p≤qC.p>qD.p<q

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数f(x)=$\left\{\begin{array}{l}{{2}^{-x}-1(x≤0)}\\{f(x-1)(x>0)}\end{array}\right.$,若关于x方程f(x)=ax有三个不相等的实数根,则实数a的取值范围是[$\frac{1}{2}$,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知指数函数y=g(x)满足:g(3)=8,定义域为R的函数f(x)=$\frac{n-g(x)}{m+2g(x)}$是奇函数.
(Ⅰ)确定y=g(x),y=f(x)的解析式;
(Ⅱ)若h(x)=f(x)+a在(-1,1)上有零点,求a的取值范围;
(Ⅲ)若对任意的t∈(-1,4),不等式f(2t-3)+f(t2-k)<0恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知2x=7y=t,且$\frac{1}{x}$+$\frac{1}{y}$=2,则t的值为(  )
A.14B.$\sqrt{14}$C.7D.$\sqrt{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.计算下列各式值
(1)(-0.1)0+$\root{3}{2}$×2${\;}^{\frac{2}{3}}$+($\frac{1}{4}$)${\;}^{-\frac{1}{2}}$
(2)lg500+lg$\frac{8}{5}$-$\frac{1}{2}$lg64+50(lg2+lg5)2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设集合A={x|x>1},B={x|x≥2}.
(1)求集合A∩(∁RB);
(2)若集合C={x|x-a>0},且满足A∩C=C,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.定义在R上的函数f(x)满足f(x+y)=f(x)+f(y)+2xy,f(1)=2,则f(3)=(  )
A.6B.8C.12D.14

查看答案和解析>>

同步练习册答案