精英家教网 > 高中数学 > 题目详情
17.计算下列各式值
(1)(-0.1)0+$\root{3}{2}$×2${\;}^{\frac{2}{3}}$+($\frac{1}{4}$)${\;}^{-\frac{1}{2}}$
(2)lg500+lg$\frac{8}{5}$-$\frac{1}{2}$lg64+50(lg2+lg5)2

分析 (1)利用指数幂的运算法则即可得出.
(2)利用对数的运算法则即可得出.

解答 解:(1)原式=1+${2}^{\frac{1}{3}+\frac{2}{3}}$+${2}^{-2×(-\frac{1}{2})}$
=1+2+2=5.
(2)原式=$lg\frac{500×\frac{8}{5}}{\sqrt{64}}$+50=2+50=52.

点评 本题考查了指数幂与对数的运算法则,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.经济学中,函数f(x)的边际函数M(x)定义为M(x)=f(x+1)-f(x),利润函数p(x)边际利润函数定义为M1(x)=p(x+1)-p(x),某公司最多生产 100 台报系统装置,生产x台的收入函数为R(x)=3000x-20x2(单位:元),其成本函数为C(x)=500x+4000x(单位:元),利润是收入与成本之差.
(1)求利润函数p(x)及边际利润函数M1(x);
(2)利润函数p(x)与边际利润函数M1(x)是否具有相等的最大值?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知集合A={1,2,k},B={1,2,3,5},若A∪B={1,2,3,5},则k=3或5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知数列{an}满足a1=1,an2=(2an+1)an+1(n∈N*).
(1)求a2、a3的值;
(2)求数列{an}的通项公式;
(3)求证:$\sum_{i=1}^n{\frac{{8{a_i}}}{{1+{a_i}}}}$<7.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知函数f(x)=$\left\{\begin{array}{l}{|lgx|,0<x≤10}\\{-\frac{1}{10}x+2,x>10}\end{array}\right.$,若a,b,c互不相等,且f(a)=f(b)=f(c),则abc的取值范围是(10,20).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.一个等比数列{an}的前n项和为10,前2n项和为30,则前3n项和为70.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数f(x)=$\left\{\begin{array}{l}{x^2}+3a,x<0\\{log_a}({x+1})+1,x≥0\end{array}$(a>0且a≠1)在R上单调递减,且关于x的方程|f(x)|=2-x恰好有两个不相等的实数解,则a的取值范围是$[{\frac{1}{3},\frac{2}{3}}]∪\left\{{\frac{3}{4}}\right\}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若cos80°cos130°-sin80°sin130°等于(  )
A.-$\frac{{\sqrt{3}}}{2}$B.-$\frac{1}{2}$C.$\frac{1}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在“心连心”活动中,5名党员被分配到甲、乙、丙三个村子进行入户走访,每个村子至少安排1名党员参加,且A,B两名党员必须在同一个村子的不同分配方法的总数为36.

查看答案和解析>>

同步练习册答案