精英家教网 > 高中数学 > 题目详情
3.在平行四边形ABCD中,|$\overrightarrow{AB}+\overrightarrow{AD}$|=|$\overrightarrow{AB}-\overrightarrow{AD}$|,则平行四边形ABCD的形状是矩形.

分析 利用两个向量的加减法的法则,以及其几何意义,向量的模的定义,可得平行四边形ABCD的两条对角线AC=BD,从而得出结论.

解答 解:∵在平行四边形ABCD中,|$\overrightarrow{AB}+\overrightarrow{AD}$|=|$\overrightarrow{AB}-\overrightarrow{AD}$|,
则平行四边形ABCD的两条对角线AC=BD,故平行四边形ABCD的形状是矩形,
故答案为:矩形.

点评 本题主要考查两个向量的加减法的法则,以及其几何意义,向量的模的定义,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.某工厂为了了解一批产品的净重(单位:克)情况,从中随机抽测了200件产品的净重,所得数据均在区间[96,106]上,其频率分布直方图如图所示,已知各个小方形按高度依次构成一个等差数列,则在抽测的200件产品中,净重在区间[98,102)上的产品件数是100.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知平面上三个向量$\overrightarrow{a}$、$\overrightarrow{b}$、$\overrightarrow{c}$,给出下列说法:
①若$\overrightarrow{c}$=$\overrightarrow{a}$$+\overrightarrow{b}$,则$\overrightarrow{a}$、$\overrightarrow{b}$可以作为基底;
②若$\overrightarrow{a}$$∥\overrightarrow{b}$,且|$\overrightarrow{a}$|=|$\overrightarrow{b}$|,则$\overrightarrow{a}$=$\overrightarrow{b}$;
③若$\overrightarrow{a}$=$λ\overrightarrow{b}$,则|$\overrightarrow{a}$|=λ|$\overrightarrow{b}$|;
④若$\overrightarrow{a}$$+\overrightarrow{b}+\overrightarrow{c}$=$\overrightarrow{0}$,则|$\overrightarrow{c}$|≤|$\overrightarrow{a}$|+|$\overrightarrow{b}$|.
其中正确说法的序号是④(写出所有正确的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.证明:如果两个平面分别平行于第三个平面,那么这两个平面互相平行.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在明朝程大位《算法统宗》中有这样的一首歌谣:“远看巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯”.这首古诗描述的这个宝塔其古称浮屠,本题一共有7层.每层悬挂的红灯数是上一层的2倍,共有381盏灯,问塔顶有几盏灯?你算出顶层有3盏灯.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设复数z=$\frac{-3+9i}{1+2i}$,$\overline{z}$为共轭复数
(1)求$\overline{z}$;
(2)求|1+$\overline{z}$|

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在一次购物抽奖活动中,假设10张奖券中有一等奖奖券1张,可获价值50元的奖品,有二等奖奖券3张,每张可获价值10元的奖品,其余6张没有奖品.
(1)顾客甲从10张奖券中任意抽取1张,求中奖金额X的分布列;
(2)顾客乙从10张奖券中任意抽取2张,
①求顾客乙中奖的概率;
②设顾客乙获得的奖品总价值为Y元,求Y的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知顶点在原点,准线为x=-1的抛物线的焦点与双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点F相同,点A,B是两曲线的交点,若$\overrightarrow{OA}•\overrightarrow{BF}$+$\overrightarrow{OB}•\overrightarrow{AF}$=$\overrightarrow{OB}•\overrightarrow{AB}$,则双曲线的实轴为(  )
A.2$\sqrt{5}$-2B.2C.2$\sqrt{3}$-2D.2$\sqrt{2}$-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.函数y=sin($\frac{π}{3}$-x)+sin($\frac{π}{3}$+x)的最小正周期是2π.

查看答案和解析>>

同步练习册答案