精英家教网 > 高中数学 > 题目详情
10.如图,在三棱锥P-ABC中,PA=PB=AB=BC=2,∠CBA=∠PBC=60°,Q为线段BC的中点.
(1)求证:PA⊥BC;
(2)求点Q到平面PAC的距离.

分析 (1)由题意得到三角形ABC为等边三角形,由Q为BC中点,得到AQ垂直于BC,同理得到三角形BPC为等边三角形,得到PQ垂直于BC,由AQ与QC交于Q,得到BC与平面APQ垂直,而AP属于平面PAQ,即可得到PA与BC垂直;
(2)设点Q到平面PAC的距离为h,根据VQ-ACP=VC-APQ,利用体积法求出h,即为点Q到平面PAC的距离.

解答 (1)证明:∵在△ABC中,BC=AB,∠CBA=60°,
∴△ABC为等边三角形,
∵Q为BC的中点,
∴AQ⊥BC,
同理在等边△BPC中,PQ⊥BC,
∵QA∩QC=Q,
∴BC⊥平面PAQ,
∵AP?平面PAQ,
∴BC⊥PA;
(2)设点Q到平面PAC的距离为h,由(1)得QA=QP=$\sqrt{3}$,
∵AP=2,
∴S△QPA=$\frac{1}{2}$×2×$\sqrt{2}$=$\sqrt{2}$,
∵BC⊥平面PAQ,且CQ=1,
∴VC-PAQ=$\frac{1}{3}$×$\sqrt{2}$×1=$\frac{\sqrt{2}}{3}$,
∵AC=AP=PC=2,
∴S△PAC=$\frac{1}{2}$×2×2×sin60°=$\sqrt{3}$,
∴VQ-PAC=$\frac{1}{3}$×$\sqrt{3}$×h,
∵VC-PAQ=VQ-PAC
∴$\frac{\sqrt{2}}{3}$=$\frac{1}{3}$×$\sqrt{3}$×h,
解得:h=$\frac{\sqrt{6}}{3}$,
则点Q到平面PAC的距离为$\frac{\sqrt{6}}{3}$.

点评 此题考查了点、线、面之间的距离,等边三角形的判定与性质,以及直线与平面垂直的判定与性质,熟练掌握判定与性质是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.在△ABC中,a,b,c分别为内角A,B,C所对的边,且$a=3,b=2\sqrt{6},B=2A$,则c的值为(  )
A.3B.4C.5D.3或5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设θ为第二象限角,若$tan(θ+\frac{π}{3})=\frac{1}{2}$,则sinθ+$\sqrt{3}$cosθ=(  )
A.-1B.1C.$-\frac{{2\sqrt{5}}}{5}$D.$\frac{{2\sqrt{5}}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.某商场举行购物抽奖活动,抽奖箱中放有除编号不同外,其余均相同的20个小球,这20个小球编号的茎叶图如图所示,活动规则如下:从抽奖箱中随机抽取一球,若抽取的小球编号是十位数字为l的奇数,则为一等奖,奖金100元;若抽取的小球编号是十位数字为2的奇数,则为二等奖,奖金50元;若抽取的小球是其余编号则不中奖.现某顾客有放回的抽奖两次,两次抽奖相互独立.
(I)求该顾客在两次抽奖中恰有一次中奖的概率;
(Ⅱ)记该顾客两次抽奖后的奖金之和为随机变量X,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.为了解某学科考试成绩情况,从甲、乙两个班级各随机抽取10名同学的成绩进行统计分析,成绩小于90分为不及格,抽取甲、乙两个班的成绩记录如下:
甲:77 75 72 88 86 83 98 95 108 106
乙:78 79 86 87 88 91 92 93 95 101
(Ⅰ)用茎叶图表示两组数据,并指出甲班10名同学成绩的方差与乙班10名同学成绩的方差的大小(不要求计算出具体值,给出结论即可);
(Ⅱ)从甲班10人中取两人,乙班10人中取一人,三人中不及格人数记为X,求X的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.函数f(x)=$\frac{4-x}{4x-2}$,在区间(0,$\frac{1}{2}$)∪($\frac{1}{2}$,2)上函数f(x)≥1的概率为(  )
A.$\frac{1}{4}$B.$\frac{7}{20}$C.$\frac{9}{20}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列四种说法中,正确的个数有(  )
①命题?x∈R均有x2-3x-2≥0的否定是:?x0∈R,使得x02-3x0-2≥0;
②“命题P∨Q为真”是“命题P∧Q为真”的必要不充分条件;
③?m∈R,使f(x)=mx${\;}^{{m}^{2}+2m}$是幂函数,且在(0,+∞)上是单调递增;
④在线性回归分析中,相关系数r的值越大,变量间的相关性越强.
A.3个B.2个C.1个D.0个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.某化工厂产生的废气经过过滤后排放,以模型$y={P_0}{e^{-kx}}$去拟合过滤过程中废气的污染物数量ymg/L与时间xh间的一组数据时,为了求出回归方程,设z=lny,其变换后得到线性回归方程z=-0.5x+2+ln300,则当经过6h后,预报废气的污染物数量为(  )
A.300e2mg/LB.300emg/LC.$\frac{300}{e^2}$mg/LD.$\frac{300}{e}$mg/L

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知向量$\overrightarrow{a}$=(sin2α-$\frac{2\sqrt{5}}{3}$,2cosα),$\overrightarrow{b}$=(1,1-sinα),α∈(0,π),且$\overrightarrow{a}$$⊥\overrightarrow{b}$,则tan($α-\frac{π}{4}$)=(  )
A.9-4$\sqrt{5}$B.4$\sqrt{5}$-9C.5$\sqrt{2}$-9D.9+4$\sqrt{5}$

查看答案和解析>>

同步练习册答案