精英家教网 > 高中数学 > 题目详情
19.某化工厂产生的废气经过过滤后排放,以模型$y={P_0}{e^{-kx}}$去拟合过滤过程中废气的污染物数量ymg/L与时间xh间的一组数据时,为了求出回归方程,设z=lny,其变换后得到线性回归方程z=-0.5x+2+ln300,则当经过6h后,预报废气的污染物数量为(  )
A.300e2mg/LB.300emg/LC.$\frac{300}{e^2}$mg/LD.$\frac{300}{e}$mg/L

分析 将x=6代入回归方程求出z,再将z代入z=lny得出y.

解答 解:当x=6时,z=-1+ln300=ln$\frac{300}{e}$,
∴y=ez=$\frac{300}{e}$.
故选:D.

点评 本题考查了回归方程的拟合估计,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知函数$f(x)=Acos(wx+φ)(w>0,|φ|<\frac{π}{2})$的部分图象如图所示,其中N,P的坐标分别为$(\frac{5}{8}π,-A),(\frac{11}{8}π,-0)$,则函数f(x)的单调递减区间不可能为(  )
A.$[\frac{π}{8},\frac{5π}{8}]$B.$[-\frac{7π}{8},-\frac{3π}{8}]$C.$[\frac{9π}{4},\frac{21π}{8}]$D.$[\frac{9π}{8},\frac{33π}{8}]$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,在三棱锥P-ABC中,PA=PB=AB=BC=2,∠CBA=∠PBC=60°,Q为线段BC的中点.
(1)求证:PA⊥BC;
(2)求点Q到平面PAC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知等差数列{an}的通项公式${a_n}=3n-1(n∈{N^*})$.设数列{bn}为等比数列,且${b_n}={a_{k_n}}$.
(Ⅰ)若b1=a1=2,且等比数列{bn}的公比最小,
(ⅰ)写出数列{bn}的前4项;
(ⅱ)求数列{kn}的通项公式;
(Ⅱ)证明:以b1=a2=5为首项的无穷等比数列{bn}有无数多个.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数f(x)=ex-ax-1,g(x)=ln(ex-1)-lnx,若存在m>0,使f(g(m))>f(m)成立,则a的取值范图是(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.利用计算机产生120个随机正整数,其最高位数字(如:34的最高位数字为3,567的最高位数字为5)的频数分布图如图所示,若从这120个正整数中任意取出一个,设其最高位数字为d(d=1,2,…,9)的概率为P,下列选项中,最能反映P与d的关系的是(  )
A.P=lg(1+$\frac{1}{d}$)B.P=$\frac{1}{d+2}$C.P=$\frac{{(d-5)}^{2}}{120}$D.P=$\frac{3}{5}$×$\frac{1}{{2}^{d}}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若有点M1(4,3)和M2(2,-1),点M分有向线段$\overrightarrow{{{M}_{1}M}_{2}}$的比λ=-2.则点M的坐标(0,-5).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知f(x)满足下列条件,分别求f(x)的解析式.
(1)已知f($\sqrt{x}$-1)=x-2$\sqrt{x}$,求f(x);
(2)已知f(x)为二次函数,f(0)=0,f(x+1)=f(x)+x+1,求f(x);
(3)已知f(x)满足f(x)+2f(-x)=$\frac{1}{1+x}$,求f(x);
(4)已知f(x)为偶函数,且对于任意实数x,y,都有f(x+y)=f(x)+f(y)+xy,求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若${∫}_{1}^{2}$(x-a)dx=${∫}_{0}^{\frac{π}{4}}$cos2xdx,则a等于1.

查看答案和解析>>

同步练习册答案