精英家教网 > 高中数学 > 题目详情
3.已知偶函数g(x)满足g(x+1)=g(x-1),且当x∈[0,1]时,g(x)=2x-1,函数f(x)=$\left\{\begin{array}{l}{(1-x)^{\frac{1}{2}},x≤1}\\{lo{g}_{5}x,x>1}\end{array}\right.$,则函数y=f(x)-g(x)的零点个数是(  )
A.5B.6C.7D.8

分析 求出函数g(x)的周期,画出函数g(x)与f(x)的图象,然后判断两个函数的交点个数,就是函数y=f(x)-g(x)的零点个数.

解答 解:偶函数g(x)满足g(x+1)=g(x-1),即有g(x+2)=g(x),函数的周期是2,
当x∈[0,1]时,g(x)=2x-1,
函数f(x)=$\left\{\begin{array}{l}{(1-x)^{\frac{1}{2}},x≤1}\\{lo{g}_{5}x,x>1}\end{array}\right.$,
画出两个函数的图象如图:

两个函数的图象由5个交点,
函数y=f(x)-g(x)的零点个数是5个.
故选:A.

点评 本题考查函数的零点个数的判断,函数的图象的应用,考查数形结合以及转化思想的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知{an}为等比数列,a1=1,a4=27; Sn为等差数列{bn} 的前n 项和,b1=3,S5=35.
(1)求{an}和{bn} 的通项公式;
(2)设数列{cn} 满足cn=anbn(n∈N*),求数列{cn} 的前n 项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设p:实数x满足ax-(1+a2)x2>0(a>0);q:实数x满足2x2-x-1<0.若(¬p)∧q为真,求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知边长分别为a,b,c的三角形ABC面积为S,内切圆O的半径为r,连接OA,OB,OC,则三角形OAB,OBC,OAC的面积分别为$\frac{1}{2}cr,\frac{1}{2}ar,\frac{1}{2}$br,由S=$\frac{1}{2}cr+\frac{1}{2}ar+\frac{1}{2}$br得r=$\frac{2S}{a+b+c}$,类比得四面体的体积为V,四个面的面积分别为S1,S2,S3,S4,则内切球的半径R=$\frac{3V}{{{S_1}+{S_2}+{S_3}+{S_4}}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=sinωx+λcosωx,其图象的一个对称中心到最近的一条对称轴的距离为$\frac{π}{4}$,且在x=$\frac{π}{12}$处取得最大值.
(1)求λ的值.
(2)设$g(x)=af(x)+cos(4x-\frac{π}{3})$在区间$(\frac{π}{4},\frac{π}{3})$上是增函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知a=5${\;}^{lo{g}_{2}3.4}$,b=5log43.6,c=($\frac{1}{5}$)${\;}^{lo{g}_{2}0.3}$之间的大小关系为(  )
A.a>b>cB.b>a>cC.a>c>bD.c>a>b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知$\frac{a+2i}{i}$=b+i(a,b是实数),其中i是虚数单位,则ab=(  )
A.-2B.-1C.1D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知实数x,y满足$\left\{\begin{array}{l}2x-y+4≥0\\ x-2y-5≤0\\ x+2y-4≤0\end{array}\right.$,则z=2x+3y的最大值与最小值之差为(  )
A.-$\frac{68}{3}$B.$\frac{371}{12}$C.$\frac{33}{4}$D.$\frac{28}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数fk(x)=ax+ka-x,(k∈Z,a>0且a≠1).
(Ⅰ)若f1(1)=3,求f1($\frac{1}{2}$)的值;
(Ⅱ)若fk(x)为定义在R上的奇函数,且a>1,是否存在实数λ,使得fk(cos2x)+fk(2λsinx-5)<0对任意x∈[0,$\frac{2π}{3}$]恒成立,若存在,请求出实数k的取值范围;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案