精英家教网 > 高中数学 > 题目详情
5.已知函数f(x)=x2+ax+3
(1)当x∈R时,f(x)≥2恒成立,求a的取值范围;
(2)当x∈R时,g(x)=f(2x).
①求g(x)的值域;
②若g(x)≤a有解,求a的取值范围.

分析 (1)f(x)≥2恒成立 即  x2+ax+1≥0恒成立,即△=a2-4≤0,解得a的取值范围;
(2)①令2x=t∈(0,+∞)得$y=g(x)={t^2}+at+3={(t+\frac{a}{2})^2}-\frac{a^2}{4}+3$,进而得到g(x)的值域;
②若g(x)≤a有解,即g(x)min≤a,进而得到a的取值范围.

解答 (本题满分12分)
解:(1)f(x)≥2恒成立 即  x2+ax+1≥0恒成立,
得△=a2-4≤0于是-2≤a≤2…(4分)
(2)①令2x=t∈(0,+∞)
得$y=g(x)={t^2}+at+3={(t+\frac{a}{2})^2}-\frac{a^2}{4}+3$
关于t的二次函数图象为抛物线,开口向上,图象过点(0,3),对称轴$t=-\frac{a}{2}$…(5分)
当$-\frac{a}{2}≤0即a≥0$g(x)>3
当$-\frac{a}{2}>0即a<0$$g{(x)_{min}}=3-\frac{a^2}{4}$
于是  当a≥0时,g(x)∈(3,+∞)
当a<0时,$g(x)∈[3-\frac{a^2}{4},+∞)$…(8分)
②g(x)≤a有解,即g(x)min≤a…(9分)
由①$\left\{\begin{array}{l}a≥0\\ 3<a\end{array}\right.⇒a>3$
或$\left\{\begin{array}{l}a<0\\ 3-\frac{a^2}{4}≤a\end{array}\right.⇒\left\{\begin{array}{l}a<0\\{a^2}+4a-12≥0\end{array}\right.⇒a≤-6$
综上得a∈(-∞,-6]∪(3,+∞)为所求…(12分)

点评 本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质,是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.若函数f(x)=$\left\{\begin{array}{l}{\frac{1}{2}x+m,x<1}\\{x-lnx,x≥1}\end{array}\right.$在R上单调递增,则实数m的取值范围是($-∞,\frac{1}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在矩阵A的变换下,坐标平面上的点的横坐标伸长到原来的3倍,纵坐标不变.
(1)求矩阵A及A-1
(2)求圆x2+y2=4在矩阵A-1的变换下得到的曲线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.数学与文学之间存在着许多奇妙的联系.诗中有回文诗,如:“云边月影沙边雁,水外天光山外树”,倒过来读,便是“树外山光天外水,雁边沙影月边云”,其意境和韵味读来是一种享受!数学中也有回文数,如:88,454,7337,43534等都是回文数,无论从左往右读,还是从右往左读,都是同一个数,称这样的数为“回文数”,读起来还真有趣!
二位的回文数有11,22,33,44,55,66,77,88,99,共9个;
三位的回文数有101,111,121,131,…,969,979,989,999,共90个;
那么,5位的回文数总共有900个.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.气象部门提供了某地区今年六月份(30天)的日最高气温的统计表如表:
日最高气温t(单位:℃)t≤22℃22℃<t≤28℃28℃<t≤32℃t>32℃
天数612XY
由于工作疏忽,统计表被墨水污染,Y和X数据不清楚,但气象部门提供的资料显示,六月份的日最高气温不高于32℃的频率为0.8.
(Ⅰ)求X,Y的值;
(Ⅱ)把日最高气温高于32℃称为本地区的“高温天气”,根据已知条件完成下面2×2列联表,并据此推测是否有95%的把握认为本地区的“高温天气”与冷饮“旺销”有关?说明理由.
高温天气非高温天气合计
旺销22224        
不旺销426
合计62430
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k)0.100.0500.0250.0100.0050.001
k2.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知$\vec a$,$\vec b$,$\vec c$在同一平面内,且$\vec a$=(1,2).
(1)若|$\vec c$|=2$\sqrt{5}$,且$\vec c$∥$\vec a$,求$\vec c$;
(2)若|$\vec b$|=$\frac{\sqrt{5}}{2}$,且($\vec a$+2$\vec b$)⊥(2$\vec a$-$\vec b$),求$\vec a$与$\vec b$的夹角.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.命题:“?x>0,x2-x≥0”的否定形式是(  )
A.?x≤0,x2-x>0B.?x>0,x2-x≤0C.?x≤0,x2-x>0D.?x>0,x2-x<0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.计算下列式子的值:
(1)$lg8+lg125-{(\frac{1}{7})^{-2}}+{16^{\frac{3}{4}}}+{(\sqrt{3}-1)^0}$;
(2)$sin\frac{25π}{6}+cos\frac{25π}{3}+tan(-\frac{25π}{4})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知角α的顶点在坐标原点,始边与x轴的非负半轴重合,终边经过点$P({-3,\sqrt{3}})$.
(1)求sin2α-tanα的值;
(2)若函数f(x)=cos(x-α)cosα-sin(x-α)sinα,求函数$g(x)-\sqrt{3}f({\frac{π}{2}-2x})-2{f^2}(x)$在区间$[{0,\frac{2π}{3}}]$上的值域.

查看答案和解析>>

同步练习册答案