分析 利用函数的导数,判断函数的单调性,通过分段函数利用单调性列出不等式求解即可.
解答 解:函数f(x)=$\left\{\begin{array}{l}{\frac{1}{2}x+m,x<1}\\{x-lnx,x≥1}\end{array}\right.$,
令g(x)=x-lnx,则g′(x)=1-$\frac{1}{x}$,当x>1时,g(x)单增,g(x)≥g(1)=1.由题意得,$\frac{1}{2}+m≤1$,解得m$≤\frac{1}{2}$.
故答案为:($-∞,\frac{1}{2}$].
点评 本题考查函数的单调性的判断与应用,分段函数的应用,考查转化思想以及计算能力.
科目:高中数学 来源: 题型:选择题
| A. | [-2,2) | B. | [-2,1) | C. | [-2,0)∪(0,1) | D. | [-2,0)∪(0,2] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $({\frac{5}{12},\frac{3}{4}}]$ | B. | $[{\frac{5}{12},+∞})$ | C. | $({0,\frac{5}{12}}]$ | D. | $({\frac{1}{3},\frac{1}{4}}]$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,$\frac{8}{3}$) | B. | (-∞,$\frac{5}{6}$) | C. | (-$\frac{3}{2}$,$\frac{5}{6}$) | D. | ($\frac{8}{3}$,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com