精英家教网 > 高中数学 > 题目详情
以下命题:
|
a
|+|
b
|=|
a
+
b
|
a
b
共线的充要条件;
②空间任意一点O与不共线三点A,B,C满足
OP
=2
OA
+3
OB
-4
OC
,则P,A,B,C四点共面;
③若两平面的法向量不垂直,则这两个平面一定不垂直.
其中正确的命题是(  )
A、②B、①②C、②③D、①②③
考点:命题的真假判断与应用
专题:简易逻辑
分析:|
a
|+|
b
|=|
a
+
b
|
可推得
a
b
共线,但
a
b
共线,不能推出|
a
|+|
b
|=|
a
+
b
|

②原命题可化为:
BP
=2
CA
+2
CB
,可得
BP
CA
CB
共面,进而可得四点共面;
③可判其逆否命题正确.
解答: 解:①|
a
|+|
b
|=|
a
+
b
|
可推得
a
b
同向或反向,即
a
b
共线,
a
b
共线,若反向且长度相等,则不能推出|
a
|+|
b
|=|
a
+
b
|
,故错误;
②空间任意一点O和不共线的三点A,B,C满足
OP
=2
OA
+3
OB
-4
OC

OP
-
OB
=2
OA
+2
OB
-4
OC
,即
BP
=2
CA
+2
CB
,故向量
BP
CA
CB
共面,即P,A,B,C四点共面,故正确;
③若两个平面垂直,则它们的法向量一定垂直,由原命题和逆否命题的关系可得
若两个平面的法向量不垂直,则这两个平面一定不垂直,故正确
故选:C.
点评:本题考查充要条件的判断,涉及向量的知识的应用,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆M:
x2
a2
+
y2
b2
=1(a>b>0)
经过如下五个点中的三个点:P1(-1,-
2
2
)
,P2(0,1),P3(
1
2
2
2
)
P4(1,
2
2
)
,P5(1,1).
(Ⅰ)求椭圆M的方程;
(Ⅱ)设点A为椭圆M的左顶点,B,C为椭圆M上不同于点A的两点,若原点在△ABC的外部,且△ABC为直角三角形,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题:
①函数f(x)在=
1
lgx
(0,+∞)上是减函数
②函数f(x)的图象连续不断,且定义域为R,若x=x0为极值点,则f′(x0)=0
③函数f(x)=2sinxcosx的最小正周期为π
④已知
a
=(1,
3
),
b
=(0,-1),则
a
b
的夹角为
5
6
π

其中,正确命题的序号是
 
.(把你认为正确命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

设点P是函数y=-
4-(x-1)2
图象上的任意一点,点Q(2a,a-3)(a∈R),则|PQ|的最小值为(  )
A、
8
5
5
-2
B、
5
C、
5
-2
D、
7
5
5
-2

查看答案和解析>>

科目:高中数学 来源: 题型:

执行所示的程序框图,如果输入a=3,那么输出的n的值为(  )
A、2B、3C、4D、5

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,定义d(P,Q)=|x1-x2|+|y1-y2|为两点P(x1,y1),Q(x2,y2)之间的“折线距离”.在这个定义下,给出下列命题:
①到原点的“折线距离”等于1的点的集合是一个正方形;
②到原点的“折线距离”等于1的点的集合是一个圆;
③到M(-1,0),N(1,0)两点的“折线距离”相等的点的轨迹方程是x=0;
④到M(-1,0),N(1,0)两点的“折线距离”差的绝对值为1的点的集合是两条平行线.
其中正确的命题有(  )
A、1个
B、2 个
C、3 个
D、4个

查看答案和解析>>

科目:高中数学 来源: 题型:

圆锥底面半径为r,母线长是底面半径的3倍,在底面圆周上有一点A,求一个动点P自A出发在侧面上绕一周到A点的最短路程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的左右焦点分别为F1,F2,上顶点A,△AF1F2为正三角形,以线段F1F2为直径的圆与直线y═
3
x-4相切.

(1)求椭圆C的方程和离心率.

(2)若点P为焦点F1关于直线x=-
5
2
的对称点,动点M满足
|MF1|
|MF2|
=e,问是否存在一定点T,使得动点M到定点T的距离为定值?若存在,求出定点T的坐标及此定值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
x-y+2≥0
x+y-4≥0
2x-y-5≤0
求:
(Ⅰ)z=x+2y-4的最大值;
(Ⅱ)z=x2+y2-10y+25的最小值;
(Ⅲ)z=
2y+1
x+1
的范围.

查看答案和解析>>

同步练习册答案