精英家教网 > 高中数学 > 题目详情
已知椭圆M:
x2
a2
+
y2
b2
=1(a>b>0)
经过如下五个点中的三个点:P1(-1,-
2
2
)
,P2(0,1),P3(
1
2
2
2
)
P4(1,
2
2
)
,P5(1,1).
(Ⅰ)求椭圆M的方程;
(Ⅱ)设点A为椭圆M的左顶点,B,C为椭圆M上不同于点A的两点,若原点在△ABC的外部,且△ABC为直角三角形,求△ABC面积的最大值.
考点:直线与圆锥曲线的综合问题
专题:综合题,圆锥曲线的定义、性质与方程
分析:(Ⅰ)确定椭圆M经过P1(-1,-
2
2
)
,P2(0,1),P4(1,
2
2
)
,代入方程,即可求椭圆M的方程;
(Ⅱ)分类讨论,设出直线方程与椭圆方程联立,利用△ABC为直角三角形,可得直线方程,利用原点在△ABC的外部,即可求△ABC面积的最大值.
解答: 解:(Ⅰ)由
(
1
2
)
2
a2
+
(
2
2
)
2
b2
(-1)2
a2
+
(-
2
2
)
2
b2
=
12
a2
+
(
2
2
)
2
b2
12
a2
+
12
b2
,知P3(
1
2
2
2
)
和P5(1,1)不在椭圆M上,即椭圆M经过P1(-1,-
2
2
)
,P2(0,1),P4(1,
2
2
)

于是a2=2,b2=1.
所以 椭圆M的方程为:
x2
2
+y2=1
.…(2分)
(Ⅱ)①当∠A=90°时,设直线BC:x=ty+m,
x2+2y2=2
x=ty+m
得(t2+2)y2+2tmy+(m2-2)=0.
设B(x1,y1),C(x2,y2),则△=16-8m2+8t2>0,
y1+y2=-
2tm
t2+2
y1y2=
m2-2
t2+2

所以kABkAC=
y1
x1+
2
y2
x2+
2
=
y1y2
(ty1+m+
2
)(ty2+m+
2
)

=
y1y2
t2y1y2+t(m+
2
)(y1+y2)+(m+
2
)
2
=
m-
2
2(m+
2
)
=-1

于是m=-
2
3
,此时△=16-
16
9
+8t2>0

所以直线BC:x=ty-
2
3

因为y1y2=-
16
9
t2+2
<0
,故线段BC与x轴相交于M(-
2
3
,0)

即原点在线段AM的延长线上,即原点在△ABC的外部,符合题设.…(6分)
所以 S△ABC=
1
2
|AM|•|y1-y2|=
2
3
|y1-y2|
=
2
9
[(y1+y2)2-4y1y2]
=
2
9
[(
2
3
2
t
t2+2
)
2
-4(-
16
9
t2+2
)]

=
16
81
×
9t2+16
(t2+2)2
=
16
81
(4-
4t4+7t2
t4+4t2+4
)
8
9

当t=0时取到最大值
8
9
.…(9分)
②当∠A≠90°时,不妨设∠B=90°.
设直线AB:x=ty-
2
(t≠0)
,由
x2+2y2=2
x=ty-
2
(t2+2)y2-2
2
ty=0

所以 y=0或y=
2
2
t
t2+2

所以B(
2
t2-2
2
t2+2
2
2
t
t2+2
)
,由AB⊥BC,可得直线BC:y=-tx+
2
t3
t2+2

x2+2y2=2
y=-tx+
2
t3
t2+2
(t2+2)(2t2+1)y2-2
2
t3y-
8t2(t2+1)
t2+2
=0

所以 yByC=-
8t2(t2+1)
(t2+2)2(2t2+1)
<0

所以线段BC与x轴相交于N(
2
t2
t2+2
,0)

显然原点在线段AN上,即原点在△ABC的内部,不符合题设.
综上所述,所求的△ABC面积的最大值为
8
9
.…(12分)
点评:本题考查椭圆的方程,考查直线与椭圆的位置关系,考查分类讨论的数学思想,考查学生分析解决问题的能力,有难度.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下面几个命题中,假命题是(  )
A、“若a≤b,则2a≤2b-1”的否命题
B、“?a∈(0,+∞),函数y=ax在定义域内单调递增”的否定
C、“π是函数y=sinx的一个周期”或“2π是函数y=sin2x的一个周期”
D、“x2+y2=0”是“xy=0”的必要条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数f(x)=
x+3
-1
x+2
的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
过点(
3
2
2
)
,它的离心率为
6
2
,P、Q分别在双曲线的两条渐近线上,M是线段PQ中点,|PQ|=2
2

(Ⅰ)求双曲线及其渐近线方程;
(Ⅱ)求点M的轨迹C的方程;
(Ⅲ)过C左焦点F1的直线l与C相交于点A、B,F2为C的右焦点,求△ABF2面积最大时
F2A
F2B
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-x+a+1
(1)若f(x)≥0对一切实数x恒成立,求实数a的取值范围.
(2)若f(x)在区间[a,a+1]是单调函数,求a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

某厂生产甲、乙两种产品每吨所需的煤、电和产值如下表所示
用煤(吨) 用电(千瓦) 产值(万元)
甲产品 5 10 4
乙产品 6 20 6
但该厂每天可用的煤、电有限,每天供煤至多50吨,供电至多140千瓦,该厂最大日产值为
 
万元.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题中所有真命题的序号是
 

①“a>b”是“a2>b2”的充分条件;
②“|a|>|b|”是“a2>b2”的必要条件;
③“a>b”是“a+c>b+c”的充要条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
log4x ,x>0
3x ,   x≤0
,则f[f(
1
4
)]=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

以下命题:
|
a
|+|
b
|=|
a
+
b
|
a
b
共线的充要条件;
②空间任意一点O与不共线三点A,B,C满足
OP
=2
OA
+3
OB
-4
OC
,则P,A,B,C四点共面;
③若两平面的法向量不垂直,则这两个平面一定不垂直.
其中正确的命题是(  )
A、②B、①②C、②③D、①②③

查看答案和解析>>

同步练习册答案