精英家教网 > 高中数学 > 题目详情
某厂生产甲、乙两种产品每吨所需的煤、电和产值如下表所示
用煤(吨) 用电(千瓦) 产值(万元)
甲产品 5 10 4
乙产品 6 20 6
但该厂每天可用的煤、电有限,每天供煤至多50吨,供电至多140千瓦,该厂最大日产值为
 
万元.
考点:简单线性规划的应用
专题:应用题,不等式的解法及应用
分析:设该厂每天安排生产甲产品x吨,乙产品y吨,可得目标函数为z=4x+6y.根据题意,建立关于x、y的不等式组并作出可行域,利用直线平移的方法可得当x=4且y=5时,目标函数z的最大值为46,由此即可得到本题答案.
解答: 解:设该厂每天安排生产甲产品x吨,乙产品y吨,日产值为z,可得z=4x+6y,
其中x、y满足约束条件
5x+6y≤50
10x+20y≤140
x≥0
y≥0
,作出可行域,如图所示
将直线l:z=4x+6y进行平移,由图可知当直线l经过可行域上的点M时,
直线在y轴上的截距最大,目标函数z同时达到最大值
解方程组
5x+6y=50
10x+20y=140
,得M(4,5)
∴z的最大值为zmax=4×4+6×5=46
故答案为:46.
点评:本题给出实际问题,求该厂如何安排生产,使得该厂日产值达最大值,着重考查了二元一次不等式组表示的平面区域和简单线性规划的应用等知识,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列关于极限的计算,错误的是(  )
A、
lim
n→∞
2n2+n+7
5n2+7
=
lim
n→∞
2+
1
n
+
7
n2
5+
7
n2
=
2
5
B、
lim
n→∞
2
n2
+
4
n2
+…+
2n
n2
)=
lim
n→∞
2
n2
+
lim
n→∞
4
n2
+…+
lim
n→∞
2n
n2
=0+0+…+0=0
C、
lim
n→∞
n2+n
-n)=
lim
n→∞
n
n2+n
+n
=
lim
n→∞
1
1+
1
n
+1
=
1
2
D、已知an=
2-n(n为奇数)
3-n(n为偶数)
,则
lim
n→∞
(a1+a2+…+an)
=
2-1
1-2-2
+
3-2
1-3-2
=
19
24

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A,B是抛物线W:y=x2上的两个点,点A的坐标为(1,1),直线AB的斜率为k,O为坐标原点.
(Ⅰ)若抛物线W的焦点在直线AB的下方,求k的取值范围;
(Ⅱ)设C为W上一点,且AB⊥AC,过B,C两点分别作W的切线,记两切线的交点为D,求|OD|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,△ABC的顶点B、C的坐标为B(-2,0),C(2,0),直线AB,AC的斜率乘积为-
1
4
,设顶点A的轨迹为曲线E.
(1)求曲线E的方程;
(2)设曲线E与y轴负半轴的交点为D,过点D作两条互相垂直的直线l1,l2,这两条直线与曲线E的另一个交点分别为M,N.设l1的斜率为k(k≠0),△DMN的面积为S,试求
S
|k|
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆M:
x2
a2
+
y2
b2
=1(a>b>0)
经过如下五个点中的三个点:P1(-1,-
2
2
)
,P2(0,1),P3(
1
2
2
2
)
P4(1,
2
2
)
,P5(1,1).
(Ⅰ)求椭圆M的方程;
(Ⅱ)设点A为椭圆M的左顶点,B,C为椭圆M上不同于点A的两点,若原点在△ABC的外部,且△ABC为直角三角形,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法:
①“若tanA+tanB+tanC>0,则△ABC是锐角三角形”是真命题;
②“若x=y,则sinx=siny”的逆命题为真命题;
③sin4>cos4;
④函数f(x)=|sinx|+|cosx|的最小正周期是π;
⑤在△ABC中,∠A<∠B是cos2A>cos2B的充要条件;
其中错误的是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题中:①函数f(x)=sinx+
2
sinx
(x∈(0,π))
的最小值是2
2

②在△ABC中,若sin2A=sin2B,则△ABC是等腰或直角三角形;
③如果正实数a,b,c满足a+b>c,则
a
1+a
+
b
1+b
c
1+c

④如果y=f(x)是可导函数,则f′(x0)=0是函数y=f(x)在x=x0处取到极值的必要不充分条件.
其中正确的命题是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知角α的顶点与原点重合,始边与x轴的正半轴重合,终边上一点的坐标为(3,4),则cos2α=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,定义d(P,Q)=|x1-x2|+|y1-y2|为两点P(x1,y1),Q(x2,y2)之间的“折线距离”.在这个定义下,给出下列命题:
①到原点的“折线距离”等于1的点的集合是一个正方形;
②到原点的“折线距离”等于1的点的集合是一个圆;
③到M(-1,0),N(1,0)两点的“折线距离”相等的点的轨迹方程是x=0;
④到M(-1,0),N(1,0)两点的“折线距离”差的绝对值为1的点的集合是两条平行线.
其中正确的命题有(  )
A、1个
B、2 个
C、3 个
D、4个

查看答案和解析>>

同步练习册答案