精英家教网 > 高中数学 > 题目详情
下列关于极限的计算,错误的是(  )
A、
lim
n→∞
2n2+n+7
5n2+7
=
lim
n→∞
2+
1
n
+
7
n2
5+
7
n2
=
2
5
B、
lim
n→∞
2
n2
+
4
n2
+…+
2n
n2
)=
lim
n→∞
2
n2
+
lim
n→∞
4
n2
+…+
lim
n→∞
2n
n2
=0+0+…+0=0
C、
lim
n→∞
n2+n
-n)=
lim
n→∞
n
n2+n
+n
=
lim
n→∞
1
1+
1
n
+1
=
1
2
D、已知an=
2-n(n为奇数)
3-n(n为偶数)
,则
lim
n→∞
(a1+a2+…+an)
=
2-1
1-2-2
+
3-2
1-3-2
=
19
24
考点:极限及其运算
专题:阅读型,探究型
分析:题目中四个极限均为数列极限,A中分子分母最高次项次数相同,采用分子分母同时除以n2后求极限值;B和D需要先求和再取极限,C应先分子有理化,然后求极限.
解答: 解:选项A求的是数列极限,采用分子分母同时除以n2后求极限值,正确;
选项B应先求数列的前n项和,即
2
n2
+
4
n2
+…+
2n
n2
=
1
n2
(2+2n)•n
2
=
n2+1
n2
,然后求得极限值为1,
∴选项B错误;
选项C是采用先分子有理化,然后分子分母同时除以n再取极限,正确;
选项D是运用等比数列的求和公式先把奇数项和偶数项分别作和,然后求极限值,做法正确.
故选:B.
点评:本题考查数列的极限及其求法,解答的关键是消去无穷大项,同时注意先化简再取极限,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数y=sinx+
3
cosx,x∈[-
3
π
3
]的值域是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

方程x2-2x+5=0的一个根是(  )
A、1+2iB、-1+2i
C、2+iD、2-i

查看答案和解析>>

科目:高中数学 来源: 题型:

若复数z满足:iz=3+4i,则|z|=(  )
A、1
B、2
C、
5
D、5

查看答案和解析>>

科目:高中数学 来源: 题型:

下面几个命题中,假命题是(  )
A、“若a≤b,则2a≤2b-1”的否命题
B、“?a∈(0,+∞),函数y=ax在定义域内单调递增”的否定
C、“π是函数y=sinx的一个周期”或“2π是函数y=sin2x的一个周期”
D、“x2+y2=0”是“xy=0”的必要条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax2+ln(x+1).
(1)当a=-
1
4
时,求函数f(x)的单调区间;
(2)若函数f(x)在区间[1,+∞)上为减函数,求实数a的取值范围;
(3)当x∈[0,+∞)时,不等式f(x)-x≤0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,椭圆C1
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
2
2
,x轴被曲线C2:y=x2-b截得的线段长等于椭圆C1的短轴长.C2与y轴的交点为M,过点M的两条互相垂直的直线l1,l2分别交抛物线于A、B两点,交椭圆于D、E两点,
(Ⅰ)求C1、C2的方程;
(Ⅱ)记△MAB,△MDE的面积分别为S1、S2,若
S1
S2
=
5
8
,求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l1过A(0,1),与直线x=-2相交于点P(-2,y0),直线l2过B(0,-1)与x相交于Q(x0,0),x0、y0满足y0-
x0
2
=1
,l1∩l2=M.
(Ⅰ)求直线l1的方程(方程中含有y0);
(Ⅱ)求点M的轨迹C的方程;
(Ⅲ)过C左焦点F1的直线l与C相交于点A、B,F2为C的右焦点,求△ABF2面积最大时点F2到直线l的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

某厂生产甲、乙两种产品每吨所需的煤、电和产值如下表所示
用煤(吨) 用电(千瓦) 产值(万元)
甲产品 5 10 4
乙产品 6 20 6
但该厂每天可用的煤、电有限,每天供煤至多50吨,供电至多140千瓦,该厂最大日产值为
 
万元.

查看答案和解析>>

同步练习册答案