12£®ÒÑÖªÍÖÔ²$C£º\frac{x^2}{a^2}+\frac{y^2}{b^2}=1£¨a£¾b£¾0£©$ÀëÐÄÂÊΪ$e=\frac{{\sqrt{3}}}{2}$£¬ÒÔÔ­µãΪԲÐÄ£¬ÒÔÍÖÔ²CµÄ¶Ì°ëÖ᳤Ϊ°ë¾¶µÄÔ²OÓëÖ±Ïßl1£º$y=x+\sqrt{2}$ÏàÇУ®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©Éè²»¹ýÔ­µãOµÄÖ±Ïßl2Óë¸ÃÍÖÔ²½»ÓÚP¡¢QÁ½µã£¬Âú×ãÖ±ÏßOP£¬PQ£¬OQµÄбÂÊÒÀ´Î³ÉµÈ±ÈÊýÁУ¬Çó¡÷OPQÃæ»ýµÄȡֵ·¶Î§£®

·ÖÎö £¨1£©ÓÉÖ±ÏßÓëÔ²ÏàÇУ¬Çó³öb=1£¬ÓÉ$e=\frac{c}{a}=\frac{{\sqrt{3}}}{2}$£¬µÃ $c=\frac{{\sqrt{3}}}{2}a$£¬ÓÉ´ËÄÜÇó³öÍÖÔ²CµÄ·½³Ì£®
£¨2£©ÓÉÌâÒâ¿ÉÖª£¬Ö±Ïßl2µÄбÂÊ´æÔÚÇÒ²»Îª0£¬¹Ê¿ÉÉèÖ±ÏßlµÄ·½³ÌΪy=kx+m£¨m¡Ù0£©£¬´úÈëÍÖÔ²·½³Ì£¬µÃ£¨1+4k2£©x2+8kmx+4£¨m2-1£©=0£¬ÓÉ´ËÀûÓøùµÄÅбðʽ¡¢Î¤´ï¶¨Àí¡¢µÈ±ÈÊýÁÐÐÔÖÊ¡¢ÏÒ³¤¹«Ê½£¬½áºÏÒÑÖªÌõ¼þ£¬ÄÜÇó³ö¡÷OPQÃæ»ýµÄȡֵ·¶Î§£®

½â´ð ½â£º£¨1£©ÓÉÖ±Ïßl1£º$x-y+\sqrt{2}=0$ÓëÔ²x2+y2=b2ÏàÇУ¬
µÃ£º$d=\frac{{|0+0+\sqrt{2}|}}{{\sqrt{{1^2}+{{£¨-1£©}^2}}}}=1=b$£¬¡­£¨2·Ö£©
ÓÉ$e=\frac{c}{a}=\frac{{\sqrt{3}}}{2}$£¬µÃ $c=\frac{{\sqrt{3}}}{2}a$£¬¡­£¨3·Ö£©
ÓÖa2=b2+c2£¬¡à${a^2}={1^2}+\frac{3}{4}{a^2}$£¬¡àa2=4£¬¡­£¨4·Ö£©
ÍÖÔ²CµÄ·½³ÌΪ$\frac{x^2}{4}+{y^2}=1$¡­£¨5·Ö£©
£¨2£©ÓÉÌâÒâ¿ÉÖª£¬Ö±Ïßl2µÄбÂÊ´æÔÚÇÒ²»Îª0£¬¹Ê¿ÉÉèÖ±ÏßlµÄ·½³ÌΪ
y=kx+m£¨m¡Ù0£©£¬P£¨x1£¬y1£©£¬Q£¨x2£¬y2£©£¬
ÓÉ$\left\{\begin{array}{l}{y=kx+m}\\{{x}^{2}+4{y}^{2}-4=0}\end{array}\right.$£¬ÏûÈ¥yµÃ£¨1+4k2£©x2+8kmx+4£¨m2-1£©=0£¬¡­£¨6·Ö£©
Ôò¡÷=64k2m2-16£¨1+4k2£©£¨m2-1£©=16£¨4k2-m2+1£©£¾0£¬
ÇÒx1+x2=$\frac{-8km}{1+4{k}^{2}}$£¬x1x2=$\frac{4£¨{m}^{2}-1£©}{1+4{k}^{2}}$£®¡­£¨7·Ö£©
¹Êy1y2=£¨kx1+m£©£¨kx2+m£©=k2x1x2+km£¨x1+x2£©+m2£®
¡ßÖ±ÏßOP£¬PQ£¬OQµÄбÂÊÒÀ´Î³ÉµÈ±ÈÊýÁУ¬
¡à$\frac{{y}_{1}}{{x}_{1}}•\frac{{y}_{2}}{{x}_{2}}$=$\frac{{k}^{2}{x}_{1}{x}_{2}+km£¨{x}_{1}+{x}_{2}£©+{m}^{2}}{{x}_{1}{x}_{2}}$=k2£¬¡­£¨8·Ö£©
¼´$\frac{-8{k}^{2}{m}^{2}}{1+4{k}^{2}}$+m2=0£¬ÓÖm¡Ù0£¬ËùÒÔk2=$\frac{1}{4}$£¬¼´k=¡À$\frac{1}{2}$£®¡­£¨9·Ö£©
ÓÉ¡÷£¾0£¬¼°Ö±ÏßOP£¬OQµÄбÂÊ´æÔÚ£¬µÃ0£¼m2£¼2ÇÒm2¡Ù1£®¡­£¨10·Ö£©
S¡÷OPQ=$\frac{1}{2}$|x1-x2||m|=$\sqrt{{m}^{2}£¨2-{m}^{2}£©}$=$\sqrt{1-{{£¨{m^2}-1£©}^2}}$£¬¡­£¨11·Ö£©
¡àS¡÷OPQµÄȡֵ·¶Î§Îª£¨0£¬1£©£®¡­£¨12·Ö£©

µãÆÀ ±¾Ì⿼²éÍÖÔ²·½³ÌµÄÇ󷨣¬¿¼²éÈý½ÇÐÎÃæ»ýµÄÇ󷨣¬ÊÇÖеµÌ⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâ¸ùµÄÅбðʽ¡¢Î¤´ï¶¨Àí¡¢µÈ±ÈÊýÁÐÐÔÖÊ¡¢ÏÒ³¤¹«Ê½µÄºÏÀíÔËÓã®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®ÒÑÖªÔÚ¡÷ABCÖУ¬a£¬b£¬cΪ½ÇA£¬B£¬CËù¶ÔµÄ±ß£¬ÇÒ2cos2$\frac{C}{2}$+£¨cosB-$\sqrt{3}$sinB£©cosA=1£®
£¨¢ñ£©Çó½ÇAµÄÖµ£»
£¨¢ò£©Çóf£¨x£©=4cosxcos£¨x-A£©ÔÚx¡Ê[0£¬$\frac{¦Ð}{2}$]µÄÖµÓò£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÒÑÖªÍÖÔ²CµÄÖÐÐÄÔÚÔ­µã£¬½¹µãÔÚxÖáÉÏ£¬ÀëÐÄÂʵÈÓÚ$\frac{1}{2}$£¬ËüµÄÒ»¸ö¶ÌÖá¶ËµãÊÇ£¨0£¬2$\sqrt{3}$£©£®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©P£¨2£¬3£©¡¢Q£¨2£¬-3£©ÊÇÍÖÔ²ÉÏÁ½µã£¬A¡¢BÊÇÍÖԲλÓÚÖ±ÏßPQÁ½²àµÄÁ½¶¯µã£¬
¢ÙÈôÖ±ÏßABµÄбÂÊΪ$\frac{1}{2}$£¬ÇóËıßÐÎAPBQÃæ»ýµÄ×î´óÖµ£»
¢Úµ±A¡¢BÔ˶¯Ê±£¬Âú×ã¡ÏAPQ=¡ÏBPQ£¬ÊÔÎÊÖ±ÏßABµÄбÂÊÊÇ·ñΪ¶¨Öµ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

20£®ÒÑÖªÔ²O1£º£¨x-2£©2+y2=16ºÍÔ²O2£ºx2+y2=r2£¨0£¼r£¼2£©£¬¶¯Ô²MÓëÔ²O1¡¢Ô²O2¶¼ÏàÇУ¬ÇÐÔ²Ô²ÐÄMµÄ¹ì¼£ÎªÁ½¸öÍÖÔ²£¬ÕâÁ½¸öÍÖÔ²µÄÀëÐÄÂÊ·Ö±ðΪe1£¬e2£¨e1£¾e2£©£¬Ôòe1+2e2µÄ×îСֵÊÇ$\frac{3+2\sqrt{2}}{4}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®Èçͼ£¬ÒÑÖªÍÖÔ²$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÀëÐÄÂÊΪ$\frac{1}{2}$£¬Ö±ÏßFÊÇÓÒ×¼ÏßÇÒ×¼Ïß·½³ÌΪx=4£®A¡¢B·Ö±ðÊÇÆä×óÓÒ¶¥µã£¬PÊÇÍÖÔ²ÉÏÒìÓÚ×óÓÒ¶¥µãµÄÈÎÒâÒ»µã£®Ö±ÏßPA¡¢PBÓëÍÖÔ²µÄÓÒ×¼Ïß·Ö±ð½»ÓÚE¡¢FÁ½µã£¬Á¬½ÓAFÓëÍÖÔ²½»ÓÚµãM£®
£¨1£©ÇóÍÖÔ²µÄ±ê×¼·½³Ì£»
£¨2£©Ö¤Ã÷£ºE¡¢B¡¢MÈýµã¹²Ïߣ®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®ÒÑÖªÍÖÔ²£º$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¬×óÓÒ½¹µã·Ö±ðΪF1£¬F2£¬¹ýF1µÄÖ±Ïßl½»ÍÖÔ²ÓÚA£¬BÁ½µã£¬ÈôAF2+BF2µÄ×î´óֵΪ5£¬ÔòÍÖÔ²·½³ÌΪ$\frac{x^2}{4}+\frac{y^2}{3}=1$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®ÉèABÊÇÍÖÔ²$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$£¨a£¾b£¾0£©µÄ³¤ÖᣬÈô°ÑAB¸ø100µÈ·Ö£¬¹ýÿ¸ö·Öµã×÷ABµÄ´¹Ïߣ¬½»ÍÖÔ²µÄÉϰ벿·ÖÓÚP1¡¢P2¡¢¡­¡¢P99£¬F1ΪÍÖÔ²µÄ×󽹵㣬Ôò|F1A|+|F1P1|+|F1P2|+¡­+|F1P99|+|F1B|µÄÖµÊÇ101a£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®ÒÑÖªµãF1£¬F2ΪÍÖÔ²$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1£¨a£¾b£¾0£©$µÄ×óÓÒ½¹µã£¬ÈôÍÖÔ²ÉÏ´æÔÚµãPʹµÃ$|{\overrightarrow{P{F_1}}}|=2|{\overrightarrow{P{F_2}}}|$£¬Ôò´ËÍÖÔ²µÄÀëÐÄÂʵÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®£¨0£¬$\frac{1}{3}$£©B£®£¨0£¬$\frac{1}{2}$]C£®£¨$\frac{1}{3}$£¬$\frac{1}{2}$]D£®[$\frac{1}{3}$£¬1£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®£¨1£©ÒÑ֪ʵÊýa£¬bÂú×ã|a|£¼2£¬|b|£¼2£¬Ö¤Ã÷£º2|a+b|£¼|4+ab|£»
£¨2£©ÒÑÖªa£¾0£¬ÇóÖ¤£º$\sqrt{{a^2}+\frac{1}{a^2}}$-$\sqrt{2}$¡Ýa+$\frac{1}{a}$-2£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸