精英家教网 > 高中数学 > 题目详情
15.已知数列{an}的首项为a1=1,a2=3,且满足对任意的n∈N,都有an+1-an≤2n,an+2-an≥3×2n成立,则a2015=22015-1.

分析 通过对an+1-an≤2n变形可得an+1-an≥2n,利用an+1-an≤2n,可得an+1-an=2n,并项相加即得结论.

解答 解:∵an+1-an≤2n,∴-an+1+an≥-2n
又∵an+2-an≥3×2n
∴an+2-an+1=an+2-an-an+1+an≥3×2n-2n=2n+1
∴an+1-an≥2n
又∵an+1-an≤2n,∴an+1-an=2n
∴a2015=a2015-a2014+a2014-a2013+…+a3-a2+a2-a1+a1
=22014+22013+…+22+2+1
=$\frac{1-{2}^{2015}}{1-2}$
=22015-1,
故答案为:22015-1.

点评 本题考查求数列的通项,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.正数列{an}的前n项和Sn满足:rSn=anan+1-1,a1=a>0,常数r∈N.
(Ⅰ)求证:an+2-an为定值;
(Ⅱ)若数列{an}是一个周期数列(即存在非零常数T,使an+T=an恒成立),求该数列的最小正周期;
(Ⅲ)若数列{an}是一个各项为有理数的等差数列,求Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知正数x,y满足xy+x+2y=6,则xy的最大值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知△ABC的内角A,B,C所对的边分别为a,b,c,向量$\overrightarrow{m}$=(2sin$\frac{A}{2}$,cosA),$\overrightarrow{n}$=(1-2sin2$\frac{A}{4}$,-$\sqrt{15}$),且$\overrightarrow{m}$⊥$\overrightarrow{n}$
(Ⅰ)求角A的余弦值;
(Ⅱ)若a=$\sqrt{6}$,求△ABC的面积最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.函数f(x)=(1+x-$\frac{x^2}{2}$+$\frac{x^3}{3}$-$\frac{x^4}{4}$+…-$\frac{{{x^{2012}}}}{2012}$+$\frac{{{x^{2013}}}}{2013}$-$\frac{{{x^{2014}}}}{2014}$+$\frac{{{x^{2015}}}}{2015}}$)cos2x在区间[-3,3]上零点的个数为(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,四棱锥P-ABCD中,底面ABCD为菱形,PA⊥底面ABCD,AC=2$\sqrt{2}$,PA=2,$\overrightarrow{PE}$=2$\overrightarrow{EC}$.
(Ⅰ)证明:PC⊥平面BED;
(Ⅱ)若直线PD与平面PBC所成角为$\frac{π}{6}$,求二面角A-PB-C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.“α为第一象限角”是“$\frac{sinα}{cosα}$+$\frac{cosα}{sinα}$≥2”的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=ln(1+x)-$\frac{ax}{x+a}$.
(Ⅰ)证明:当a=1,x>0时,f(x)>0;
(Ⅱ)若a>1,讨论f(x)在(0,+∞)上的单调性;
(Ⅲ)设n∈N*,比较$\frac{1}{2}+\frac{2}{3}+…+\frac{n}{n+1}$与n-ln(1+n)的大小,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=lnx(lnx-1)+b,且f′(1)=a,f(1)=0.
(Ⅰ)求a,b的值;
(Ⅱ)设F(x)=x[f′(x)-1],求函数F(x)的极值.

查看答案和解析>>

同步练习册答案