精英家教网 > 高中数学 > 题目详情

(理)(本小题满分12分)已知y=f(x)是偶函数,当x>0时,
且当时,恒成立,求的最小值.

解:∵f(x)是偶函数,且x>0,
∴x<0时,
∵f(x)在单调递减,在单调递增
,当且仅当时取等号.
时,时,

,∴f(x)在上最大值为,最小值为

,则
   若
      (当a=3时取最小值)

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本题满分12分)探究函数的最小值,并确定取得最小值时x的值. 列表如下, 请观察表中y值随x值变化的特点,完成以下的问题.

x

0.25
0.5
0.75
1
1.1
1.2
1.5
2
3
5

y

8.063
4.25
3.229
3
3.028
3.081
3.583
5
9.667
25.4

已知:函数在区间(0,1)上递减,问:
(1)函数在区间                  上递增.当               时,                 
(2)函数在定义域内有最大值或最小值吗?如有,是多少?此时x为何值?(直接回答结果,不需证明)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=是定义在(-1,1)上的奇函数,且f()=.
(1)求函数f(x)的解析式;
(2)用定义证明f(x)在(-1,1)上是增函数;
(3)解不等式f(t-1)+f(t)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分10分)设函数
(1)求它的定义域;(2)判断它的奇偶性;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(14分)已知函数,其中.
(1)求的解析式;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)集合A是由具备下列性质的函数f(x)组成的:
①函数f(x)的定义域是[0,+∞);
②函数f(x)的值域是[-2,4);
③函数f(x)在[0,+∞)上是增函数,试分别探究下列两小题:
(1)判断函数f1(x)=-2(x≥0)及f2(x)=4-6·x(x≥0)是否属于集合A?并简要说明理由;
(2)对于(1)中你认为属于集合A的函数f(x),不等式f(x)+f(x+2)<2f(x+1)是否对于任意的x≥0恒成立?若不成立,为什么?若成立,请说明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知函数的两个不同的零点为
(Ⅰ)证明:
(Ⅱ)证明:
(Ⅲ)若满足,试求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的定义域为对定义域内的任意,都有,且当
(1)求证:是偶函数;
(2)求证:上是增函数;
(3)解不等式

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数f(x)=x2+x-.
(1)若函数的定义域为[0,3],求f(x)的值域;
(2)若定义域为[a,a+1]时,f(x)的值域是[-,],求a的值

查看答案和解析>>

同步练习册答案