精英家教网 > 高中数学 > 题目详情
已知函数f(x)=a-
22x-1
(a∈R).
(1)用单调函数的定义探索函数f(x)的单调性:
(2)求实数a使函数f(x)为奇函数.
分析:(1)利用函数单调性的定义进行证明.
(2)利用函数的奇偶性得f(-1)=f(1),解得a的值,然后利用函数的奇偶性的定义证明求得的a值符合定义.
解答:解:(1)函数的定义域为(-∞,0)∪(0,+∞),设x1<x2
则f(x1)-f(x2)=(a-
2
2x1-1
)-(a-
2
2x2-1
)=
2(2x1-2x2)
(2x1-1)(2x2-1)

∵x1<x2,∴2x1<2x2,即2x1-2x2<0,
对?x1,x2∈(-∞,0),2x1<1,2x2<1,即2x1-1<0,2x2-1<0
∴f(x1)-f(x2)<0,
即f(x1)<f(x2),
∴f(x)在(-∞,0)上是增函数.
同理可证f(x)在(0,+∞)上也是增函数.
(2)若函数是奇函数,则f(-1)=f(1)⇒a=-1,
当a=-1时,对?x∈(-∞,0)∪(0,+∞),-x∈(-∞,0)∪(0,+∞),
∵f(-x)+f(x)=-1-
2
2x-1
-1-
2
2-x-1
=-2-
2
2x-1
-
2•2x
1-2x
=-2+2=0,
∴f(-x)=-f(x),
∴当a=-1,使函数f(x)为奇函数.
∴a=-1为所求.
点评:本题考查了函数奇偶性与单调性的定义及应用,要熟练掌握用定义法证明函数的奇偶性与单调性.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)当a∈[-2,
1
4
)
时,求f(x)的最大值;
(2)设g(x)=[f(x)-lnx]•x2,k是g(x)图象上不同两点的连线的斜率,否存在实数a,使得k≤1恒成立?若存在,求a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•海淀区二模)已知函数f(x)=a-2x的图象过原点,则不等式f(x)>
34
的解集为
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a|x|的图象经过点(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0
(1)若a•b>0,判断函数f(x)的单调性;
(2)若a=-3b,求f(x+1)>f(x)时的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-2|x|+1(a≠0),定义函数F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 给出下列命题:①F(x)=|f(x)|; ②函数F(x)是奇函数;③当a<0时,若mn<0,m+n>0,总有F(m)+F(n)<0成立,其中所有正确命题的序号是
 

查看答案和解析>>

同步练习册答案