精英家教网 > 高中数学 > 题目详情

【题目】中央电视台电视公开课《开讲了》需要现场观众,先邀请甲、乙、丙、丁四所大学的40名学生参加,各大学邀请的学生如下表所示:

大学

人数

8

12

8

12

从这40名学生中按分层抽样的方式抽取10名学生在第一排发言席就座

1求各大学抽取的人数;

21中抽取的乙大学和丁大学的学生中随机选出2名学生发言,求这2名学生来自同一所大学的概率

【答案】1,乙,丙 ,丁2

【解析】

试题分析:1从这名学生中按照分层抽样的方式抽取名学生,则各大学人数分别为甲,乙,丙,丁2利用列举出从参加问卷调查的名学生中随机抽取两名学生的方法共有种,这来自同一所大学的取法共有种,再利用古典慨型的概率计算公式即可得出

试题解析:1从这40名学生中按照分层抽样的方式抽取10名学生,则各大学人数分别为甲2,乙3,丙2,丁3

2设乙中3人为,丁中3人为,从这6名学生中随机选出2名学生发言的结果为,共15种,

这2名同学来自同一所大学的结果共6种,所以所求概率为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知甲、乙两地相距为千米,汽车从甲地匀速行驶到乙地,速度每小时不超过千米.已知汽车每小时的运输成本(单位:元)由可变部分和固定部分组成:固定部分为元,可变部分与速度(单位; )的平方成正比,且比例系数为.

(1)求汽车全程的运输成本(单位:元)关于速度(单位; )的函数解析式;

(2)为了全程的运输成本最小,汽车应该以多大的速度行驶?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知中心在坐标原点,焦点在轴上的椭圆,离心率为且过点,过定点的动直线与该椭圆相交于两点.

1若线段中点的横坐标是,求直线的方程;

2轴上是否存在点,使为常数?若存在,求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在多面体中,四边形为正方形,的中点

1求证:平面

2在线段上是否存在一点,使得二面角的大小为?若存在,求出的长;若不存在,请说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】届夏季奥林匹克运动会2016852016821在巴西里约热内卢举行为了解我校学生收看奥运会足球赛是否与性別有关,从全校学生中随机抽取名进行了问卷调查,得到列联表,从这名同学中随机抽取人,抽到收看奥运会足球赛 的学生的概率是.

男生

女生

合计

收看

不收看

合计

1请将上面的列联表补充完整,并据此资料分析收看奥运会足球赛与性別是否有关

2若从这名同学中的男同学中随机抽取人参加有奖竞猜活动,记抽到收看奥运会足球赛的学生人数为,求的分布列和数学期望.

参考公式:

,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是数列的前项和,且满足,等差数列的前项和为,且 .

(Ⅰ)求数列的通项公式;

(Ⅱ)若数列的通项公式为问是否存在互不相等的正整数 使得 成等差数列,且 成等比数列?若存在,求出 ;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的两个极值点为,且.

(1)求的值;

(2)若(其中上是单调函数, 的取值范围;

(3)当时, 求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1当函数在点处的切线方程为,求函数的解析式;

21的条件下,若是函数的零点,且,求的值;

3时,函数有两个零点,且,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,在边长为1的等边三角形中,分别是上的点,的中点,交于点沿折起,得到如图2所示的三棱锥,其中.

1求证:平面平面

2上的中点,中点,求异面直线所成角的余弦值

查看答案和解析>>

同步练习册答案