精英家教网 > 高中数学 > 题目详情
16.已知△ABC满足c2-a2-b2-$\sqrt{3}$ab=0,则角C的大小为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

分析 由已知等式,化简得ab=a2+b2-c2,再用余弦定理解出cosC,结合C∈(0,π)即可算出C的大小.

解答 解:∵c2-a2-b2-$\sqrt{3}$ab=0,可得-$\sqrt{3}$ab=a2+b2-c2
∴由余弦定理,得cosC=$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}$=$\frac{-\sqrt{3}ab}{2ab}$=-$\frac{\sqrt{3}}{2}$,
∵C∈(0,π),
∴C=$\frac{5π}{6}$.
故选:D.

点评 本题给出三角形边之间的平方关系,求角C的大小.着重考查了利用余弦定理解三角形的知识,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.已知$\overrightarrow{a}$=(-2,1,3),$\overrightarrow{b}$=(-1,2,1),若$\overrightarrow{a}$⊥($\overrightarrow{a}$+λ$\overrightarrow{b}$),则实数λ的值为(  )
A.-2B.-$\frac{14}{3}$C.$\frac{14}{5}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.命题p:若x≠2,则x2-3x+2≠0;命题q:“?x∈R,x2-x>0”的否定是“?x∈R,x2-x≤0”,下列命题中是真命题的是(  )
A.p∧qB.¬p∧qC.p∨¬qD.p∨q

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在△ABC中,内角B,C对的边分别为b,c.若C=2B,则$\frac{c}{b}$的取值范围为(  )
A.[-2,2]B.($\frac{1}{2}$,1)C.(0,2)D.(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.用数学归纳法证明:1-(3+x)n(n∈N*)能被x+2整除.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在△ABC中,a,b,c为角A,B,C的对边,且cos2C+cosC+cos(A-B)=1,则(  )
A.a,b,c成等差数列B.a,c,b成等差数列C.a,c,b成等比数列D.a,b,c成等比数列

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设m,n∈R+,若直线(m+1)x+(n+1)y-2=0与圆(x-1)2+(y-1)2=1相切,则mn的最小值是(  )
A.3-2$\sqrt{2}$B.2$\sqrt{2}$+3C.$\sqrt{2}$+1D.$\sqrt{2}$-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.某班有7名音乐爱好者,8名美术爱好者,从中任选一名作文艺代表,不同的选法有15种,如果在音乐、美术爱好者中各选一名代表,则不同的选法有56种.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.“cosx=1”是“sinx=0”的充分非必要条件.(填“充分非必要”、“必要非充分”、“充要”或“既非充分也非必要”)

查看答案和解析>>

同步练习册答案