分析 (1)用较大的数字除以较小的数字,得到商和余数,然后再用上一式中的除数和得到的余数中较大的除以较小的,以此类推,当整除时,就得到要求的最大公约数;
(2)首先把一个n次多项式f(x)写成(…((a[n]x+a[n-1])x+a[n-2])x+…+a[1])x+a[0]的形式,然后化简,求n次多项式f(x)的值就转化为求n个一次多项式的值,求出函数的值.
解答 (1)解:1995=228×8+171,
228=171×1+57,
171=57×3
因此57是1995与228的最大公约数.-----(5分)
(2)解:f(x)=3x5+2x3-8x+5=((((3x+0)x+2)x+0)x-8)x+5---(1分)
当x=2时,
v0=3,
v1=3×2=6,
v2=6×2+2=14,
v3=14×2=28,
v4=28×2-8=48,
v5=48×2+5=101------(4分)
所以,当x=2时,多项式的值是101.------(5分)
点评 本题考查用辗转相除法求两个数的最大公约数,及秦九韶算法求多项式的值,本题是一个基础题,在解题时注意数字的运算不要出错,注意与更相减损术进行比较.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 所有梯形都不是等腰梯形 | |
| B. | 存在梯形是等腰梯形 | |
| C. | 有梯形是等腰梯形,也有梯形不是等腰梯形 | |
| D. | 存在梯形不是等腰梯形 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com