分析 求得函数的导数,求得在该点处的切线的斜率,由两直线垂直的条件:斜率之积为-1,可得所求直线的斜率,由点斜式方程即可得到所求方程.
解答 解:y=1+cosx的导数为y′=-sinx,
可得在该点处的切线斜率为k=-sin$\frac{π}{3}$=-$\frac{\sqrt{3}}{2}$,
即有与切线互相垂直的直线斜率为$\frac{2\sqrt{3}}{3}$,
可得所求直线方程为y-$\frac{3}{2}$=$\frac{2\sqrt{3}}{3}$(x-$\frac{π}{3}$),即为y=$\frac{2\sqrt{3}}{3}$x+$\frac{3}{2}$-$\frac{2\sqrt{3}π}{9}$.
点评 本题考查导数的运用:求切线的斜率,考查两直线垂直的条件:斜率之积为-1,考查运算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 6 | B. | 12 | C. | 24 | D. | 48 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1+$\frac{\sqrt{3}}{2}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | 1-$\frac{\sqrt{3}}{2}$ | D. | -$\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| 办理业务所需的时间Y/分 | 1 | 2 | 3 | 4 | 5 |
| 频率 | 0.1 | 0.4 | 0.3 | 0.1 | 0.1 |
| A. | 0.22 | B. | 0.24 | C. | 0.30 | D. | 0.31 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | an=2n+3 | B. | an=2n-3 | C. | an=2n+1 | D. | an=2n-1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com