精英家教网 > 高中数学 > 题目详情

【题目】若函数f(x)=1+ +sin x在区间[-k,k](k>0)上的值域为[m,n],则m+n的值是( )
A.0
B.1
C.2
D.4

【答案】D
【解析】
,又本题中 ,在区间 上的值域为 ,即无论 取怎样的正实数都应有最大值与最小值的和是一个确定的值,故可令 ,由于 在区间 上是一个增函数,故 ,所以答案是:D.
【考点精析】解答此题的关键在于理解函数单调性的性质的相关知识,掌握函数的单调区间只能是其定义域的子区间 ,不能把单调性相同的区间和在一起写成其并集,以及对函数的值的理解,了解函数值的求法:①配方法(二次或四次);②“判别式法”;③反函数法;④换元法;⑤不等式法;⑥函数的单调性法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆 的离心率为 ,且以两焦点为直径的圆的内接正方形面积为2.
(1)求椭圆 的标准方程;
(2)若直线 与椭圆 相交于 两点,在 轴上是否存在点 ,使直线 的斜率之和 为定值?若存在,求出点 坐标及该定值,若不存在,试说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正方体 的棱长为1, 分别是棱 的中点,过 的平面与棱 分别交于点 .设

①四边形 一定是菱形;② 平面 ;③四边形 的面积 在区间 上具有单调性;④四棱锥 的体积为定值.
以上结论正确的个数是( )
A.4
B.3
C.2
D.1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若对圆 上任意一点 的取值与 无关,则实数 的取值范围是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .(Ⅰ)求函数 的单调递增区间;
(Ⅱ)函数 上的最大值与最小值的差为 ,求 的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 ,直线 的斜率之积为 .
(Ⅰ)求顶点 的轨迹方程
(Ⅱ)设动直线 ,点 关于直线 的对称点为 ,且 点在曲线 上,求 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设抛物线 的焦点为 ,准线为 ,点 在抛物线 上,已知以点 为圆心, 为半径的圆 两点.
(Ⅰ)若 的面积为4,求抛物线 的方程;
(Ⅱ)若 三点在同一条直线 上,直线 平行,且 与抛物线 只有一个公共点,求直线 的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】心理学家分析发现视觉和空间能力与性别有关,某数学兴趣小组为了验证这个结论,从兴趣小组中按分层抽样的方法抽取 名同学(男 人,女 人),给所有同学几何题和代数题各一题,让各位同学只能自由选择其中一道题进行解答.选题情况如下表(单位:人):

几何题

代数题

总计

男同学

22

8

30

女同学

8

12

20

总计

30

20

50

几何题

代数题

总计

男同学

22

8

30

女同学

8

12

20

总计

30

20

50

附表及公式:

(1)能否据此判断有 的把握认为视觉和空间能力与性别有关?
(2)现从选择做几何题的 名女生中,任意抽取两人,对她们的答题情况进行全程研究,记甲、乙两位女生被抽到的人数为 ,求 的分布列和 .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线 与椭圆 有且只有一个公共点 .
(1)求椭圆C的标准方程;
(2)若直线 CA,B两点,且OAOB(O为原点),求b的值.

查看答案和解析>>

同步练习册答案