精英家教网 > 高中数学 > 题目详情
16.几何体EFG-ABCD的面ABCD,ADGE,DCFG均为矩形,AD=DC=1,AE=$\sqrt{2}$.
(Ⅰ)求证:EF⊥平面GDB;
(Ⅱ)线段DG上是否存在点M使直线BM与平面BEF所成的角为45°?若存在,求$\frac{DM}{DG}$的值;若不存在,请说明理由.

分析 (1)连接AC,通过证明AC⊥平面BDG,EF∥AC得出EF⊥平面GDB;
(2)以D为原点建立坐标系,设M(0,0,h),求出$\overrightarrow{BM}$和平面BEF的法向量$\overrightarrow{n}$,令|cos<$\overrightarrow{n},\overrightarrow{BM}$>|=$\frac{\sqrt{2}}{2}$,解出h得出M的位置.

解答 证明:(1)连接AC,
∵四边形ABCD是矩形,AD=DC,
∴AC⊥BD.
∵四边形ADGE,DCFG均为矩形,
∴DG⊥AD,DG⊥CD,又AD∩CD=D,
∴DG⊥平面ABCD.
∴DG⊥AC
又BD?平面BDG,DG?平面BDG,BD∩DG=D,
∴AC⊥平面BDG.
∵四边形ADGE,DCFG均为矩形,
∴AE$\stackrel{∥}{=}CF$,
∴四边形ACFE是平行四边形,
∴EF∥AC,
∴EF⊥平面BDG.
(2)以D为原点,以DA,DC,DG为坐标轴建立空间直角坐标系D-xyz,如图所示:
则B(1,1,0),E(1,0,$\sqrt{2}$),F(0,1,$\sqrt{2}$),设M(0,0,h)(0$≤h≤\sqrt{2}$),
则$\overrightarrow{BM}$=(-1,-1,h),$\overrightarrow{BE}$=(0,-1,$\sqrt{2}$),$\overrightarrow{BF}$=(-1,0,$\sqrt{2}$).
设平面BEF的法向量为$\overrightarrow{n}$=(x,y,z),则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{BE}=0}\\{\overrightarrow{n}•\overrightarrow{BF}=0}\end{array}\right.$,
∴$\left\{\begin{array}{l}{-y+\sqrt{2}z=0}\\{-x+\sqrt{2}z=0}\end{array}\right.$,令z=1,得$\overrightarrow{n}$=($\sqrt{2}$,$\sqrt{2}$,1).
∴cos<$\overrightarrow{BM},\overrightarrow{n}$>=$\frac{\overrightarrow{BM}•\overrightarrow{n}}{|\overrightarrow{BM}||\overrightarrow{n}|}$=$\frac{-2\sqrt{2}+h}{\sqrt{2+{h}^{2}}\sqrt{5}}$,
∵直线BM与平面BEF所成的角为45°,
∴$\frac{2\sqrt{2}-h}{\sqrt{2+{h}^{2}}\sqrt{5}}$=$\frac{\sqrt{2}}{2}$,解得h=$\frac{\sqrt{2}}{3}$
∴$\frac{DM}{DG}=\frac{1}{3}$.

点评 本题考查了线面垂直的判定,线面角的计算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.已知某几何体的三视图如图所示,其中俯视图是正三角形,则该几何体的体积为(  )
A.$\sqrt{3}$B.2$\sqrt{3}$C.3$\sqrt{3}$D.4$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.如图:网格纸上的小正方形边长都为1,粗线画出的是某几何体的三视图,则该几何体的体积为(  )
A.4B.$\frac{16}{3}$C.$\frac{20}{3}$D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.一个三棱锥的三视图如图所示,则该三棱锥的四个面的面积中最大的是(  )
A.$\sqrt{14}$B.$\sqrt{5}$C.4D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=lnx+m(x-1)2,(m∈R)
(Ⅰ)讨论函数f(x)极值点的个数;
(Ⅱ)若对任意的x∈[1,+∞),f(x)≥0恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在平面直角坐标系中,定义$\left\{\begin{array}{l}{x_{n+1}}={x_n}-{y_n}\\{y_{n+1}}={x_n}+{y_n}\end{array}\right.,(n∈{N^*})$为点Pn(xn,yn)到点Pn+1(xn+1,yn+1)的一个变换,我们把它称为点变换.已知P1(1,0),P2(x2,y2),P3(x3,y3),…是经过点变换得到的一组无穷点列,设an=$\overrightarrow{{P_n}{P_{n+1}}}•\overrightarrow{{P_{n+1}}{P_{n+2}}}$,则满足不等式a1+a2+…+an>2016的最小正整数n的值为11.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.如图,网格纸上每个小正方形的边长均为1,某几何体的三视图如图中粗线所示,则该几何体的所有棱中最长的棱的长度是(  )
A.4$\sqrt{6}$B.2$\sqrt{21}$C.6D.4$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.对两个分类变量A,B的下列说法中正确的个数为(  )
①A与B无关,即A与B互不影响;
②A与B关系越密切,则K2的值就越大;
③K2的大小是判定A与B是否相关的唯一依据.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知cosα=$\frac{1}{3}$,cos(α+β)=-$\frac{1}{3}$,且α,β∈(0,$\frac{π}{2}$),则cosβ=$\frac{7}{9}$,2α+β=π.

查看答案和解析>>

同步练习册答案