分析 (1)由二次函数可设f(x)=ax2+bx+c(a≠0),由f(0)=1求得c的值,由f(x+1)-f(x)=2x可得a,b的值,即可得f(x)的解析式;
(2)欲使在区间[-1,1]上不等式f(x)≥2x+m恒成立,只须x2-3x+1-m≥0在区间[-1,1]上恒成立,也就是要x2-3x+1-m的最小值大于等于0,即可得m的取值范围.
解答 解:(1)由题意可知,f(0)=1,解得,c=1,
由f(x+1)-f(x)=2x.可知,[a(x+1)2+b(x+1)+1]-(ax2+bx+1)=2x,
化简得,2ax+a+b=2x,
∴$\left\{\begin{array}{l}{2a=2}\\{a+b=0}\end{array}\right.$,
∴a=1,b=-1.
∴f(x)=x2-x+1;
(2)不等式f(x)≥2x+m,可化简为x2-x+1≥2x+m,
即x2-3x+1-m≥0在区间[-1,1]上恒成立,
设g(x)=x2-3x+1-m,则其对称轴为x=$\frac{3}{2}$,
∴g(x)在[-1,1]上是单调递减函数.
因此只需g(x)的最小值大于零即可,
g(x)min=g(1),
∴g(1)≥0,
即1-3+1-m≥0,解得,m≤-1,
∴实数m的取值范围是m≤-1.
点评 本题主要考查了利用待定系数法求解二次函数的解析式,以及函数的恒成立与函数的最值求解的相互转化,主要涉及单调性在函数的最值求解中的应用.属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 直线PA1与PA2的斜率之和为定值$\frac{1}{2}$ | B. | 直线PA1与PA2的斜率之和为定值2 | ||
| C. | 直线PA1与PA2的斜率之积为定值$\frac{1}{2}$ | D. | 直线PA1与PA2的斜率之积为定值2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [e,+∞) | B. | [0,+∞) | C. | $[\frac{1}{e},+∞)$ | D. | [1,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{8}$ | B. | $\frac{5}{8}$ | C. | $\frac{1}{4}$ | D. | $\frac{3}{5}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com