精英家教网 > 高中数学 > 题目详情
设函数f(x)=2x3-3(a-1)x2+1,其中a≥1.

(1)求f(x)的单调区间;

(2)若方程f(x)=0在(-1,1)内有两个实根,求实数a的范围.

解:由已知得f′(x)=6x[x-(a-1)],

令f′(x)=0,解得x1=0,x2=a-1.

(1)当a=1时,f′(x)=6x2,f(x)在(-∞,+∞)上单调递增.

当a>1时,f′(x)=6x[x-(a-1)],

f′(x)、f(x)随x的变化情况如下表:

x

(-∞,0)

0

(0,a-1)

a-1

(a-1,+∞)

f′(x)

+

0

-

0

+

f(x)

递增

有极大值

递减

有极小值

递增

从上表可知,当a>1时,函数f(x)在(-∞,0)上单调递增;在(0,a-1)上单调递减;在(a-1,+∞)上单调递增.

(2)由(1)可知须a>1,又f(-1)=-3a+2<0,

因此,方程f(x)=0在(-1,1)内有两个实根f(1)<0.

即2-3(a-1)+1<0且a>1a>2.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=
2x+1x2+2

(Ⅰ)求f(x)的单调区间和极值;
(Ⅱ)若对一切x∈R,-3≤af(x)+b≤3,求a-b的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
2x
|x|+1
(x∈R)
,区间M=[a,b](其中a<b),集合N={y|y=f(x),x∈M},则使M=N成立的实数对(a,b)有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•重庆三模)设函数f(x)=
2x+3
3x-1
,则f-1(1)
=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
2
x+2
,点A0表示原点,点An=[n,f(n)](n∈N*).若向量
an
=
A0A1
+
A1A2
+…+
An-1An
,θn
an
i
的夹角[其中
i
=(1,0)]
,设Sn=tanθ1+tanθ2+…+tanθn,则
lim
n→∞
Sn
=
3
4
2
3
4
2

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
2x-3,x≥1
1-3x
x
,0<x<1
,若f(x0)=1,则x0等于(  )

查看答案和解析>>

同步练习册答案