精英家教网 > 高中数学 > 题目详情
19.旅店有客床110张,每床每晚收费10元时可全部客满,若收费提高2元,便减少10张客床租出.为使旅店获利最大,则每床每晚收费应提高6元.

分析 首先设为了投资少而获利大,每床每晚收费应提高x个2元,获得最大利润为y元,然后根据题意可得函数解析式:y=(10+2x)(110-10x),再利用配方法可求得当x取何值时,y最大,由于此题中x取整数,根据二次函数的性质即可求得答案.

解答 解:设每床每晚收费应提高x个2元,获得利润为y元,
根据题意得:
y=(10+2x)(110-10x)
=-20x2+110x+1100,
对称轴为:x=$\frac{11}{4}$,
∵x取整数,
∴当x=3时,y最大,
当x=3时,每床收费提高6元,床位最少,即投资少,
∴为了投资少而获利大,每床每晚收费应提高6元.
故答案为:6元.

点评 本题考查的是二次函数在实际生活中的应用.此题难度不大,解题的关键是理解题意,找到等量关系,求得二次函数解析式,解此题时还要注意x取整数.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知函数y=$\frac{1}{\sqrt{x-3}}$的定义域为集合A,函数y=x2-a的值域为集合B,若A∩B=A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设集合A={x|-1≤x≤7},S={x|k+1≤x≤2k-1},求满足下列条件的k的取值范围:
(1)A?S;
(2)A∩S=∅.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下列集合中与集合{x|x=2k+1,k∈N+}不相等的是(  )
A.{x|x=2k+3,k∈N}B.{x|x=4k±1,k∈N+}C.{x|x=2k+1,k∈N}D.{x|x=2k-3,k≥3,k∈Z}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知数列{an}的前n项和为Sn,Sn=$\frac{1}{3}$(an-1),n∈N*,求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知f(x)=$\sqrt{3}$sinωxcosωx-cos2ωx(ω>0)的周期为$\frac{π}{2}$.
(1)求ω的值及f(x)的表达式;
(2)求f(x)的最大值及相应的x的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在△ABC中,AB=AC,sinB=$\frac{8}{17}$,求sinA,cosA,tanA的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知A={x|x2-x-2<0};B={x|x2-ax-2a2≥0}
①若A∩B=∅,求a的范围;
②如A∪B=R,求a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.方程tanx+sinx-|tanx-sinx|+2lgx=0在[0,4π]上根的个数为(  )
A.5B.6C.7D.8

查看答案和解析>>

同步练习册答案