精英家教网 > 高中数学 > 题目详情
20.在平面直角坐标系xOy中,位于x轴上方的动圆与x轴相切,且与圆x2+y2-2y=0相外切.
(1)求动圆圆心轨迹C的方程式.
(2)若点P(a,b)(a≠0,b≠0)是平面上的一个动点,且满足条件:过点P可作曲线C的两条切线PM和PN,切点M,N连线与OP垂直,求证:直线MN过定点,并求出定点坐标.

分析 (1)利用动圆与x轴相切,且与圆x2+y2-2y=0相外切,建立方程,即可求动圆圆心轨迹C的方程式.
(2)求出过M,N的直线方程为:$\frac{1}{2}ax-y-b=0$,又MN⊥OP,所以kMN•kOP=-1,$\frac{1}{2}a•\frac{b}{a}=-1$,所以b=-2,即可证明结论.

解答 解:(1)设动圆圆心C(x,y),(y>0),
因为动圆与x轴相切,且与圆x2+y2-2y=0相外切,所以$\sqrt{{x^2}+{{({y-1})}^2}}-1=|y|$,
又y>0,化简得:x2=4y,(y>0).┉┉┉┉┉┉┉┉(6分)
(2)设P(a,b)(a≠0,b≠0),由方程x2=4y,(y>0)得$y=\frac{1}{4}{x^2}$,两边对x求导得$y'=\frac{1}{2}x$.
设切点M(x1,y1),N(x2,y2)则M点处切线方程为$y-{y_1}=\frac{x_1}{2}({x-{x_1}})$.
又${y_1}=\frac{1}{4}{x_1}^2$,整理得:$\frac{1}{2}{x_1}x-y-{y_1}=0$,
又切线过P(a,b),所以$\frac{1}{2}{x_1}a-b-{y_1}=0$.
同理可得:$\frac{1}{2}{x_2}a-b-{y_2}=0$┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉(9分)
所以过M,N的直线方程为:$\frac{1}{2}ax-y-b=0$
又MN⊥OP,所以kMN•kOP=-1,$\frac{1}{2}a•\frac{b}{a}=-1$,所以b=-2.┉┉┉┉┉┉┉┉┉┉(11分)
直线MN:$\frac{1}{2}ax-y+2=0$过y轴上的定点(0,2).┉┉┉┉┉┉┉(12分)

点评 本题考查轨迹方程,考查直线与圆的位置关系,考查导数知识的运用,知识综合性强.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知集合P={x∈R|0≤x≤3},Q={x∈R|x2≥4},则P∩(∁RQ)=(  )
A.[0,3]B.(0,2]C.[0,2)D.(0,3]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在四棱锥P-ABCD中,底面是边长为2的菱形,∠BAD=60°,PB=PD=2,PA=$\sqrt{6}$,AC∩BD=O
(Ⅰ)设平面ABP∩平面DCP=l,证明:l∥AB
(Ⅱ)若E是PA的中点,求三棱锥P-BCE 的体积VP-BCE

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.不等式2x2-x-3>0解集为(  )
A.{x|-1<x<$\frac{3}{2}$}B.{x|x>$\frac{3}{2}$或x<-1}C.{x|-$\frac{3}{2}$<x<1}D.{x|x>1或x<-$\frac{3}{2}$}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在平面直角坐标系中,曲线C的参数方程为$\left\{\begin{array}{l}{x=\sqrt{5}cosa}\\{y=sinα}\end{array}\right.$(α为参数).以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程为ρcos(θ+$\frac{π}{4}$)=$\sqrt{2}$.l与C交于A、B两点.
(Ⅰ)求曲线C的普通方程及直线l的直角坐标方程;
(Ⅱ)设点P(0,-2),求|PA|+|PB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设双曲线$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右顶点为A,右焦点为F(c,0),弦PQ过F且垂直于x轴,过点P、点Q分别作直线AQ、AP的垂线,两垂线交于点B,若B到直线PQ的距离小于2(a+c),则该双曲线离心率的取值范围是(  )
A.(1,$\sqrt{3}$)B.($\sqrt{3}$,+∞)C.(0,$\sqrt{3}$)D.(2,$\sqrt{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知数列 {an}  的前 n 项和为Sn,S1=6,S2=4,Sn>0且S2n,S2n-1,S2n+2成等比数列,S2n-1,S2n+2,S2n+1成等差数列,则a2016等于(  )
A.-1009B.-1008C.-1007D.-1006

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若a∈R,复数z=(a2-2a)+(a2-a-2)i是纯虚数,则(  )
A.a≠2且a≠-1B.a=0C.a=2D.a=0或a=2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设某几何体的三视图如图所示,则该几何体的体积为(  )
A.8B.4C.2D.$\frac{4}{3}$

查看答案和解析>>

同步练习册答案