精英家教网 > 高中数学 > 题目详情
8.不等式2x2-x-3>0解集为(  )
A.{x|-1<x<$\frac{3}{2}$}B.{x|x>$\frac{3}{2}$或x<-1}C.{x|-$\frac{3}{2}$<x<1}D.{x|x>1或x<-$\frac{3}{2}$}

分析 通过因式分解,不等式2x2-x-3>0化为(x+1)(2x-3)>0,解得即可.

解答 解:不等式2x2-x-3>0因式分解为(x+1)(2x-3)>0
解得:x$>\frac{3}{2}$或x<-1.
∴不等式2x2-x-3>0的解集为{x|x>$\frac{3}{2}$或x<-1}
故选:B.

点评 本题考查了一元二次不等式的解法,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.已知随机变量Z~N(1,1),其正态分布密度曲线如图所示,若向正方形OABC中随机投掷10000个点,则落入阴影部分的点的个数的估计值为(  )
附:若Z~N(μ,σ2),则 P(μ-σ<Z≤μ+σ)=0.6826;P(μ-2σ<Z≤μ+2σ)=0.9544;P(μ-3σ<Z≤μ+3σ)=0.9974.
A.6038B.6587C.7028D.7539

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若x,y满足约束条件$\left\{{\begin{array}{l}{y≥x}\\{x+y≥1}\\{2x+3y≥3}\end{array}}\right.$则z=3x+4y的最小值为(  )
A.3B.$\frac{7}{2}$C.4D.$\frac{21}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.为了解某班学生喜好体育运动是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:
喜好体育运动不喜好体育运动合计
男生20525           
女生101525
合计302050
已知按喜好体育运动与否,采用分层抽样法抽取容量为10的样本,则抽到喜好体育运动的人数为6.
(1)请将上面的列联表补充完整;
(2)能否在犯错概率不超过0.01的前提下认为喜好体育运动与性别有关?说明你的理由.
(参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+c)(b+d)(a+b)(c+d)}$(n=a+b+c+d)
独立性检验临界值表:
P(K2≥k00.100.050.0250.010
k02.7063.8415.0246.635

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知椭圆C:$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}$=1的左、右顶点分别为A,B,F为椭圆C的右焦点,圆x2+y2=4上有一动点P,P不同于A,B两点,直线PA与椭圆C交于点Q,则$\frac{{k}_{PB}}{{k}_{QF}}$的取值范围是(  )
A.(-∞,-$\frac{3}{4}$)∪(0,$\frac{3}{4}$)B.(-∞,0)∪(0,$\frac{3}{4}$)C.(-∞,-1)∪(0,1)D.(-∞,0)∪(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在△ABC中,角A,B,C所对的边分别为a,b,c,且2acosC-c=2b.
(Ⅰ)求角A的大小;
(Ⅱ)若c=$\sqrt{2}$,角B的平分线BD=$\sqrt{3}$,求a.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在平面直角坐标系xOy中,位于x轴上方的动圆与x轴相切,且与圆x2+y2-2y=0相外切.
(1)求动圆圆心轨迹C的方程式.
(2)若点P(a,b)(a≠0,b≠0)是平面上的一个动点,且满足条件:过点P可作曲线C的两条切线PM和PN,切点M,N连线与OP垂直,求证:直线MN过定点,并求出定点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.某学校为了解该校高三年级学生数学科学习情况,对广一模考试数学成绩进行分析,从中抽取了n 名学生的成绩作为样本进行统计(该校全体学生的成绩均在[60,140),按照[60,70),[70,80),[80,90),[90,100),[100,110),[110,120),[120,130),[130,140)的分组作出频率分布直方图如图1所示,样本中分数在[70,90)内的所有数据的茎叶图如图2所示.

根据上级统计划出预录分数线,有下列分数与可能被录取院校层次对照表为表( c ).
 分数[50,85][85,110][110,150]
 可能被录取院校层次 专科 本科 重本
(1)求n和频率分布直方图中的x,y的值;
(2)根据样本估计总体的思想,以事件发生的频率作为概率,若在该校高三年级学生中任取3 人,求至少有一人是可能录取为重本层次院校的概率;
(3)在选取的样本中,从可能录取为重本和专科两个层次的学生中随机抽取3 名学生进行调研,用ξ表示所抽取的3 名学生中为重本的人数,求随机变量ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.《九章算术》教会了人们用等差数列的知识来解决问题,《张丘建算经》卷上第22题为:“今有女善织,日益功疾(注:从第2天开始,每天比前一天多织相同量的布),第一天织6尺布,现一月(按30天计)共织540尺布”,则从第2天起每天比前一天多织(  )尺布.
A.$\frac{1}{2}$B.$\frac{24}{29}$C.$\frac{16}{31}$D.$\frac{16}{29}$

查看答案和解析>>

同步练习册答案