精英家教网 > 高中数学 > 题目详情
7.计算:$\frac{1-co{s}^{2}10°}{cos80°•\sqrt{1-cos20°}}$=(  )
A.$\frac{\sqrt{2}}{2}$B.$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.-$\frac{\sqrt{2}}{2}$

分析 利用诱导公式,倍角公式,同角三角函数关系式将所求式子转化为10°角的正弦函数值,即可得解.

解答 解:$\frac{1-co{s}^{2}10°}{cos80°•\sqrt{1-cos20°}}$=$\frac{si{n}^{2}10°}{sin10°•\sqrt{1-(1-2si{n}^{2}10°)}}$=$\frac{si{n}^{2}10°}{si{n}^{2}10°•\sqrt{2}}$=$\frac{\sqrt{2}}{2}$.
故选:A.

点评 本题主要考查了诱导公式,倍角公式,同角三角函数关系式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.已知数列{an}为等比数列,且a1a13+2a72=5π,则cos(a5a9)的值为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.曲线y=xex+2x-1在点(0,-1)处的切线方程为(  )
A.y=3x-1B.y=-3x-1C.y=3x+1D.y=-2x-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.下列命题中的假命题是(  )
A.?x∈R,lgx=0B.?x∈R,tanx=0C.?x∈R,2x>0D.?x∈R,x2>0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若向量$\overrightarrow{a}$•$\overrightarrow{b}$=-2,|$\overrightarrow{a}$|=4,|$\overrightarrow{b}$|=1,则向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为(  )
A.$\frac{2π}{3}$B.$\frac{π}{3}$C.$\frac{5π}{6}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.计算:log89•log32-lg4-lg25=-$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.一动圆P与圆C1:x2+y2+6x+5=0外切,同时与圆C2:x2+y2-6x-91=0内切,记该动圆圆心P的轨迹为曲线C,若点M为曲线C上的任一点,则|MC2|的最大值为9.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.sin420°的值为(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知函数f(x)=$\left\{{\begin{array}{l}{x+\frac{1}{2},x∈[1,\frac{3}{2})}\\{{2^{x-2}}+1,x∈[\frac{3}{2},3)}\end{array}}$.若存在x1,x2,当1≤x1<x2<3时,f(x1)=f(x2),则$\frac{{f({x_2})}}{x_1}$的取值范围是($\frac{4}{3}$,$\sqrt{2}$].

查看答案和解析>>

同步练习册答案