精英家教网 > 高中数学 > 题目详情
18.如果执行如图的框图,则输出的数S=(  )
A.$\frac{5}{4}$B.$\frac{4}{5}$C.$\frac{6}{5}$D.$\frac{5}{6}$

分析 执行题目中的框图知输出的数为S=$\frac{1}{{1}^{2}+1}$+$\frac{1}{{2}^{2}+2}$+$\frac{1}{{3}^{2}+3}$+$\frac{1}{{4}^{2}+4}$,
用裂项法计算即可.

解答 解:执行如图的框图知,输出的数为
S=$\frac{1}{{1}^{2}+1}$+$\frac{1}{{2}^{2}+2}$+$\frac{1}{{3}^{2}+3}$+$\frac{1}{{4}^{2}+4}$,
则S=(1-$\frac{1}{2}$)+($\frac{1}{2}$-$\frac{1}{3}$)+($\frac{1}{3}$-$\frac{1}{4}$)+($\frac{1}{4}$-$\frac{1}{5}$)=1-$\frac{1}{5}$=$\frac{4}{5}$.
故选:B.

点评 本题考查了程序框图的应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.如图所示的程序框图表示求算式“2×3×5×9×17×33”之值,则判断框内不能填入(  )
A.k≤33B.k≤38C.k≤50D.k≤65

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.集合A={x|-1<x<1},B={x|x<a}.
(1)若A∩B=∅,求a的取值范围;
(2)若A∪B={x|x<1},求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.公园263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”.利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出n的值为24.
参考数据:$\sqrt{3}$=1.732,sin15°≈0.2588,sin7.5°≈0.1305.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知点P是平行四边形ABCD所在平面外一点,如果$\overrightarrow{AB}$=(2,-1,-4),$\overrightarrow{AD}$=(4,2,0),$\overrightarrow{AP}$=(-1,2,-1)
(1)求证:$\overrightarrow{AP}$是平面ABCD的法向量
(2)求平行四边形ABCD的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,$|φ|<\frac{π}{2}$)的图象如图所示,则A+ω+φ=(  )
A.$2+\frac{π}{6}$B.$2+\frac{π}{3}$C.$4+\frac{π}{6}$D.$4+\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如图所示算法,若输入的x的值为2017,则算法执行后的输出结果是(  )
A.2016B.2017C.2D.0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=ex-a.
(Ⅰ)若函数f(x)的图象与直线l:y=x-1相切,求a的值;
(Ⅱ)若f(x)-lnx>0恒成立,求整数a的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.阅读如图所示的程序框图,运行相应程序,输出的结果是274.

查看答案和解析>>

同步练习册答案