精英家教网 > 高中数学 > 题目详情
1.已知数列{bn}的前n项和Sn=n2+2n(n∈N+).
(1)求数列{bn}的通项公式;
(2)求数列{$\frac{1}{{b}_{n}{b}_{n+1}}$}的前n项和Tn

分析 (1)由Sn=n2+2n(n∈N+).可得n=1时,b1=3;n≥2时,bn=Sn-Sn-1
(2)由(1)可得$\frac{1}{{b}_{n}{b}_{n+1}}$=$\frac{1}{(2n+1)(2n+3)}$=$\frac{1}{2}(\frac{1}{2n+1}-\frac{1}{2n+3})$.利用“裂项求和方法”即可得出.

解答 解:(1)∵Sn=n2+2n(n∈N+).∴n=1时,b1=3;n≥2时,bn=Sn-Sn-1=n2+2n-[(n-1)2+2(n-1)]=2n+1.
n=1时也成立,∴bn=2n+1.
(2)由(1)可得$\frac{1}{{b}_{n}{b}_{n+1}}$=$\frac{1}{(2n+1)(2n+3)}$=$\frac{1}{2}(\frac{1}{2n+1}-\frac{1}{2n+3})$.
∴数列{$\frac{1}{{b}_{n}{b}_{n+1}}$}的前n项和Tn=$\frac{1}{2}$$[(\frac{1}{3}-\frac{1}{5})$+$(\frac{1}{5}-\frac{1}{7})$+…+$(\frac{1}{2n+1}-\frac{1}{2n+3})]$
=$\frac{1}{2}(\frac{1}{3}-\frac{1}{2n+3})$,
∴${T_n}=\frac{n}{6n+9}$.

点评 本题考查了数列递推关系、“裂项求和”方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.若A=(-1,3],B=[2,5),则A∪B=(-1,5).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.(1)把“五进制”数1234(5)转化为“八进制”数,即1234(5)=302(8)
(2)总体由编号为01,02,…,49,50的50个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第9列数字0开始由左到右依次选取两个数字,则选出来的第5个个体的编号为43
78 16 65 72 08  02 63 14 07 02  43 69 69 38 74
32 04 94 23 49  55 80 20 36 35  48 69 97 28 01

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图所示,四棱锥P-ABCD的底面ABCD是直角梯形,BC∥AD,AB⊥AD,AB=BC=$\frac{1}{3}$AD,PA⊥底面ABCD,过AB的平面交PD于AB,交PC于N(N与A不重合).
(Ⅰ)求证:MN∥BC;
(Ⅱ)如果BM⊥AC,求此时$\frac{PM}{PD}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知m,n是两条不同的直线,α、β是两个不同的平面,若m?α,n?β,且α∥β,则下列结论一定正确的是(  )
A.m∥nB.m⊥nC.m、n异面D.m∥β

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若集合A={x||x|≤1},B={(x,y)|y=x2},则A∩B=∅.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.四边形ABCD是正方形,PB⊥平面ABCD,MA∥PB,PB=AB=2MA.
(1)求直线BD与平面PCD所成的角;
(2)求平面PMD与平面ABCD所成角的大小的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知等差数列{an}中,${a_3}=\frac{π}{4}$,则cos(a1+a2+a6)=$-\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若一个圆锥的侧面展开图是一个半径为3cm,圆心角为60°的扇形,则该圆锥的体积为$\frac{\sqrt{35}}{24}$π.

查看答案和解析>>

同步练习册答案