精英家教网 > 高中数学 > 题目详情
9.如图所示,四棱锥P-ABCD的底面ABCD是直角梯形,BC∥AD,AB⊥AD,AB=BC=$\frac{1}{3}$AD,PA⊥底面ABCD,过AB的平面交PD于AB,交PC于N(N与A不重合).
(Ⅰ)求证:MN∥BC;
(Ⅱ)如果BM⊥AC,求此时$\frac{PM}{PD}$的值.

分析 (Ⅰ)证明BC∥平面PAD,利用线面平行的性质定理证明MN∥BC;
(Ⅱ)过M作MK∥PA交AD于K,连结BK,证明AC⊥BK.知$AK=\frac{1}{3}AD$,即可求此时$\frac{PM}{PD}$的值.

解答 (Ⅰ)证明:因为梯形ABCD,且BC∥AD,
又因为BC?平面PAD,AB?平面PAD,
所以BC∥平面PAD.
因为平面BCNM∩平面PAD=MN,
所以MN∥BC. …(4分)
(Ⅱ)解:过M作MK∥PA交AD于K,连结BK.
因为PA⊥底面ABCD,
所以MK⊥底面ABCD
所以MK⊥AC.
又因为BM⊥AC,BM∩MK=M
所以AC⊥平面BMK,
所以AC⊥BK.
知$AK=\frac{1}{3}AD$,
所以$\frac{PM}{PD}=\frac{1}{3}$.    …(12分)

点评 本题考查线面平行的判定与性质,考查线面垂直,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知集合A={x|1<x-1<3},B={x|(x-3)(x-a)<0},
(1)当a=5时,求A∩B,A∪B.
(2)若A∩B=B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知全集U=R,集合A={x|x2-6x+5<0},B=$\left\{{\left.x\right|\frac{x-2}{x-4}>0}\right\}$,C={x|3a-2<x<4a-3}求:
(1)A∩B,∁U(A∪B);
(2)若C⊆A,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.经销商经销某种农产品,在一个销售季度内,每售出1t该产品获利润600元,未售出的产品,每1t亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了130t该农产品.以X(单位:t,100≤X≤150)表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的利润.
(Ⅰ)将T表示为X的函数;
(Ⅱ)根据直方图估计利润T不少于60000元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.某厂生产一种仪器,由于受生产能力与技术水平的限制,会产生一些次品.根据经验知道,该厂生产这种仪器,次品率P与日产量x(件)(x∈N*)之间大体满足如框图所示的关系(注:次品率$P=\frac{次品数}{生产量}$,如P=0.1表示每生产10件产品,约有1件次品,其余为合格品).又已知每生产一件合格的仪器可以盈利A(元),但每生产一件次品将亏损$\frac{A}{2}$(元).
(Ⅰ)求日盈利额T(元)与日产量x(件)(x∈N*)的函数关系;
(Ⅱ)当日产量为多少时,可获得最大利润?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在某校举办的“激扬青春,勇担责任”演讲比赛中,有七位评委选手打分,若选手甲所得分数用茎叶图表示如图,则选手甲所得分数的中位数为(  )
A.87B.86C.85D.84

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知数列{bn}的前n项和Sn=n2+2n(n∈N+).
(1)求数列{bn}的通项公式;
(2)求数列{$\frac{1}{{b}_{n}{b}_{n+1}}$}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知集合A={x|y=2x},B={x|$\sqrt{x}$≤2,x∈Z},则A∩B=(  )
A.(0,2]B.[0,4]C.{1,2,3,4}D.{0,1,2,3,4}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.幂函数f(x)的图象经过点($\sqrt{2}$,2),点(-2,$\frac{1}{4}$)在幂函数g(x)的图象上,当f(x)>g(x)时,x的取值范围为x<-1或x>1.

查看答案和解析>>

同步练习册答案