精英家教网 > 高中数学 > 题目详情
12.设等差数列{an}的和为Sn,则S4,S8-S4,S12-S8,S14-S12成等差数列,类比以上结论有:设等比数列{bn}的前n项积为Tn,则T4,$\frac{{T}_{8}}{{T}_{4}}$,$\frac{{T}_{12}}{{T}_{8}}$,$\frac{{T}_{16}}{{T}_{12}}$成等比数列.

分析 由于等差数列与等比数列具有类比性,且等差数列与和差有关,等比数列与积商有关,因此当等差数列依次每4项之和仍成等差数列时,类比到等比数列为依次每4项的积的商成等比数列.下面证明该结论的正确性.

解答 解:设等比数列{bn}的公比为q,首项为b1
则T4=b14q6,T8=b18q1+2++7=b18q28
T12=b112q1+2++11=b112q66
∴$\frac{{T}_{8}}{{T}_{4}}$=b14q22,$\frac{{T}_{12}}{{T}_{8}}$=b14q38
即($\frac{{T}_{8}}{{T}_{4}}$)2=$\frac{{T}_{12}}{{T}_{8}}$•T4,故T4,$\frac{{T}_{8}}{{T}_{4}}$,$\frac{{T}_{12}}{{T}_{8}}$,成等比数列,
故答案为:$\frac{{T}_{8}}{{T}_{4}}$,$\frac{{T}_{12}}{{T}_{8}}$.

点评 本题主要考查类比推理,类比推理一般步骤:①找出两类事物之间的相似性或者一致性.②用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(或猜想).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.已知△ABC的内角A,B,C所对的边为a,b,c,A=60°,b=1,c=4,则a=$\sqrt{13}$,$\frac{a+b+c}{sinA+sinB+sinC}$=$\frac{{2\sqrt{39}}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知直线l:x-ay+3=0的倾斜角为30°,则实数a的值是$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设数列{an}的首项a1≠$\frac{3}{5}$,且an+1+2an=3n,an-bn=$\frac{3^n}{5}$,(n∈N*).
(Ⅰ)证明:{bn}是等比数列;
(Ⅱ)若a1=$\frac{3}{2}$,数列{an}中是否存在连续三项成等差数列?若存在,写出这三项,若不存在说明理由.
(Ⅲ)若{an}是递增数列,求a1的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下列有关命题说法正确的是(  )
A.命题“若x2=4,则x=2”的否命题为“若x2=4,则x≠2”
B.所有常数列既是等差数列也是等比数列
C.命题“若x=y,则sinx=siny”的逆否命题为假命题
D.命题“?x∈R,x2+x<0”的否定是“?x∈R,x2+x≥0”.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.某同学寒假期间对其30位亲属的饮食习惯进行了一次调查,列出了如下2×2列联表:
偏爱蔬菜偏爱肉类合计
50岁以下4812
50岁以上16218
合计201030
则可以说其亲属的饮食习惯与年龄有关的把握为(  )
A.90%B.95%C.99%D.99.9%

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知点P(-3,4)在角α的终边上,则$\frac{sinα+cosα}{3sinα+2cosα}$的值为(  )
A.-$\frac{1}{6}$B.$\frac{1}{6}$C.$\frac{7}{18}$D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若函数f(x)的定义域为[0,3],则f(x2-1)的定义域为(  )
A.[0,9]B.[0,8]C.[-2,-1]∪[1,2]D.[1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设M、N是直角梯形ABCD两腰的中点,DE⊥AB于E(如图),AE=EB=DE=2.现将△ADE沿DE折起,使二面角A-DE-B为90°,P,Q分别是线段AE和线段EB上任意一点,若MQ⊥PN时,求PQ长度的取值范围$[{\frac{{\sqrt{5}}}{5},1}]$.

查看答案和解析>>

同步练习册答案