精英家教网 > 高中数学 > 题目详情
2.已知△ABC的内角A,B,C所对的边为a,b,c,A=60°,b=1,c=4,则a=$\sqrt{13}$,$\frac{a+b+c}{sinA+sinB+sinC}$=$\frac{{2\sqrt{39}}}{3}$.

分析 由已知及余弦定理可求a的值,由正弦定理可得$\frac{a+b+c}{sinA+sinB+sinC}$=$\frac{a}{sinA}$,从而得解.

解答 解:由余弦定理可得:a2=b2+c2-2bccosA=1+16-2×$1×4×\frac{1}{2}$=13,可得a=$\sqrt{13}$,
由正弦定理可得:$\frac{a+b+c}{sinA+sinB+sinC}$=$\frac{a}{sinA}$=$\frac{\sqrt{13}}{\frac{\sqrt{3}}{2}}$=$\frac{{2\sqrt{39}}}{3}$.
故答案为:$\sqrt{13}$,$\frac{{2\sqrt{39}}}{3}$.

点评 本题主要考查了正弦定理,余弦定理在解三角形中的综合应用,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.已知A(-4,0),B是圆F:(x-4)2+y2=4(F为圆心)上一动点,线段AB的垂直平分线交直线BF于P,则动点P的轨迹方程为x2-$\frac{{y}^{2}}{15}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知向量$\overrightarrow a$=(2,3),$\overrightarrow b$=(-4,7),则$\overrightarrow a$在$\overrightarrow b$方向上的投影为$\frac{{\sqrt{65}}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.一个由十个数字组成的密码的前八个数字为1,1,2,3,5,8,1,3,请你推测最后的两个数字最有可能是(  )
A.2,1B.2,0C.1,3D.3,1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.从{1,2,3}中随机选取一个数为a,从{1,2,3,4,5}中随机选取一个数为b,则a>b的概率是(  )
A.$\frac{4}{5}$B.$\frac{3}{5}$C.$\frac{2}{5}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设函数f(x)是定义R上的奇函数,若f(x)的最小周期为5,且f(2)≥2,f(3)=$\frac{{2}^{m+1}-3}{{2}^{m}+1}$,则实数m的最大值为-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知命题P:在R上定义运算?:x?y=(1-x)y,不等式x?ax<1对任意实数x恒成立;命题Q:若不等式$\frac{{x}^{2}-ax+6}{x+1}$≥2对任意的x∈N*恒成立.若P∧Q为假命题,P∨Q为真命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.$\int_{-1}^1{(2x-3{x^2})dx=}$-2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设等差数列{an}的和为Sn,则S4,S8-S4,S12-S8,S14-S12成等差数列,类比以上结论有:设等比数列{bn}的前n项积为Tn,则T4,$\frac{{T}_{8}}{{T}_{4}}$,$\frac{{T}_{12}}{{T}_{8}}$,$\frac{{T}_{16}}{{T}_{12}}$成等比数列.

查看答案和解析>>

同步练习册答案